BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38393582)

  • 21. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures.
    Cirino PC; Chin JW; Ingram LO
    Biotechnol Bioeng; 2006 Dec; 95(6):1167-76. PubMed ID: 16838379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of xylose transporters in xylitol production from engineered Escherichia coli.
    Khankal R; Chin JW; Cirino PC
    J Biotechnol; 2008 Apr; 134(3-4):246-52. PubMed ID: 18359531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H
    Kim H; Lee HS; Park H; Lee DH; Boles E; Chung D; Park YC
    Enzyme Microb Technol; 2017 Dec; 107():7-14. PubMed ID: 28899489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of xylitol by Saccharomyces cerevisiae using waste xylose mother liquor and corncob residues.
    He Y; Li H; Chen L; Zheng L; Ye C; Hou J; Bao X; Liu W; Shen Y
    Microb Biotechnol; 2021 Sep; 14(5):2059-2071. PubMed ID: 34255428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient production of 1,2,4-butanetriol from corn cob hydrolysate by metabolically engineered Escherichia coli.
    Li P; Wang M; Di H; Du Q; Zhang Y; Tan X; Xu P; Gao C; Jiang T; Lü C; Ma C
    Microb Cell Fact; 2024 Feb; 23(1):49. PubMed ID: 38347493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp].
    Fang XN; Huang W; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):295-8. PubMed ID: 15969126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of NADPH-linked D-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by D-xylose, L-arabinose, or D-galactose.
    Bolen PL; Detroy RW
    Biotechnol Bioeng; 1985 Mar; 27(3):302-7. PubMed ID: 18553673
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18.
    Zhang J; Geng A; Yao C; Lu Y; Li Q
    Bioresour Technol; 2012 Feb; 105():134-41. PubMed ID: 22196071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Priority of pentose utilization at the level of transcription: arabinose, xylose, and ribose operons.
    Kang HY; Song S; Park C
    Mol Cells; 1998 Jun; 8(3):318-23. PubMed ID: 9666469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli.
    Su B; Wu M; Zhang Z; Lin J; Yang L
    Metab Eng; 2015 Sep; 31():112-22. PubMed ID: 26197036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbiological purification of L-arabitol from xylitol mother liquor.
    Jiang M; Wang B; Yang L; Lin S; Cheng H
    J Microbiol Biotechnol; 2011 Jan; 21(1):43-9. PubMed ID: 21301191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli.
    Sakakibara Y; Saha BC; Taylor P
    J Biosci Bioeng; 2009 May; 107(5):506-11. PubMed ID: 19393548
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reciprocal Regulation of l-Arabinose and d-Xylose Metabolism in Escherichia coli.
    Koirala S; Wang X; Rao CV
    J Bacteriol; 2016 Feb; 198(3):386-93. PubMed ID: 26527647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose.
    Ammar EM; Wang X; Rao CV
    Sci Rep; 2018 Jan; 8(1):609. PubMed ID: 29330542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic behavior of Candida guilliermondii yeast during xylitol production from Brewer's spent grain hemicellulosic hydrolysate.
    Mussatto SI; Dragone G; Roberto IC
    Biotechnol Prog; 2005; 21(4):1352-6. PubMed ID: 16080723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media.
    Mussatto SI; Silva CJ; Roberto IC
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):681-6. PubMed ID: 16541249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. L-arabinose pathway engineering for arabitol-free xylitol production in Candida tropicalis.
    Yoon BH; Jeon WY; Shim WY; Kim JH
    Biotechnol Lett; 2011 Apr; 33(4):747-53. PubMed ID: 21127946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Xylitol production by Cyberlindnera (Williopsis) saturnus, a tropical mangrove yeast from xylose and corn cob hydrolysate.
    Kamat S; Gaikwad S; Ravi Kumar A; Gade WN
    J Appl Microbiol; 2013 Dec; 115(6):1357-67. PubMed ID: 23957303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.