BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38393593)

  • 1. Organotypic 3D Cell Culture of the Embryonic Lacrimal Gland.
    Kuony A; Brezak M; Mège RM; Sumbalova Koledova Z
    Methods Mol Biol; 2024; 2764():145-156. PubMed ID: 38393593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the forkhead transcription factor, Foxc1, in the development of the mouse lacrimal gland.
    Mattiske D; Sommer P; Kidson SH; Hogan BL
    Dev Dyn; 2006 Apr; 235(4):1074-80. PubMed ID: 16470615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of hepatocyte growth factor in branching morphogenesis of murine salivary gland.
    Ikari T; Hiraki A; Seki K; Sugiura T; Matsumoto K; Shirasuna K
    Dev Dyn; 2003 Oct; 228(2):173-84. PubMed ID: 14517989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic modification and recombination of salivary gland organ cultures.
    Sequeira SJ; Gervais EM; Ray S; Larsen M
    J Vis Exp; 2013 Jan; (71):e50060. PubMed ID: 23407326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription factors Runx1 to 3 are expressed in the lacrimal gland epithelium and are involved in regulation of gland morphogenesis and regeneration.
    Voronov D; Gromova A; Liu D; Zoukhri D; Medvinsky A; Meech R; Makarenkova HP
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3115-25. PubMed ID: 23532528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FGF signaling activates a Sox9-Sox10 pathway for the formation and branching morphogenesis of mouse ocular glands.
    Chen Z; Huang J; Liu Y; Dattilo LK; Huh SH; Ornitz D; Beebe DC
    Development; 2014 Jul; 141(13):2691-701. PubMed ID: 24924191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF10 is an inducer and Pax6 a competence factor for lacrimal gland development.
    Makarenkova HP; Ito M; Govindarajan V; Faber SC; Sun L; McMahon G; Overbeek PA; Lang RA
    Development; 2000 Jun; 127(12):2563-72. PubMed ID: 10821755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Profiling of the Developing Lacrimal Gland Reveals Putative Role of Notch Signaling in Branching Morphogenesis.
    Dvoriantchikova G; Tao W; Pappas S; Gaidosh G; Tse DT; Ivanov D; Pelaez D
    Invest Ophthalmol Vis Sci; 2017 Feb; 58(2):1098-1109. PubMed ID: 28192800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salivary Gland Development in Culture.
    Gaete M; Teshima THN; Chatzeli L; Tucker AS
    Methods Mol Biol; 2022; 2403():277-294. PubMed ID: 34913130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADAMTS18 regulates early branching morphogenesis of lacrimal gland and has a significant association with the risk of dry eye in mice.
    Wang L; Sun M; Zhang Q; Dang S; Zhang W
    Exp Eye Res; 2022 May; 218():109020. PubMed ID: 35240198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bmp7 regulates branching morphogenesis of the lacrimal gland by promoting mesenchymal proliferation and condensation.
    Dean C; Ito M; Makarenkova HP; Faber SC; Lang RA
    Development; 2004 Sep; 131(17):4155-65. PubMed ID: 15280212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulating temporospatial dynamics of morphogen for structure formation of the lacrimal gland by chitosan biomaterials.
    Hsiao YC; Yang TL
    Biomaterials; 2017 Jan; 113():42-55. PubMed ID: 27810641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges and Strategies for Regenerating the Lacrimal Gland.
    Hirayama M; Kawakita T; Tsubota K; Shimmura S
    Ocul Surf; 2016 Apr; 14(2):135-43. PubMed ID: 26738799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of transcription factors that promote the differentiation of human pluripotent stem cells into lacrimal gland epithelium-like cells.
    Hirayama M; Ko SBH; Kawakita T; Akiyama T; Goparaju SK; Soma A; Nakatake Y; Sakota M; Chikazawa-Nohtomi N; Shimmura S; Tsubota K; Ko MSH
    NPJ Aging Mech Dis; 2017; 3():1. PubMed ID: 28649419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal control over elongating and branching morphogenesis in salivary gland development.
    Nogawa H; Mizuno T
    J Embryol Exp Morphol; 1981 Dec; 66():209-21. PubMed ID: 7338711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocol for Studying Embryonic Mammary Gland Branching Morphogenesis Ex Vivo.
    Lan Q; Satta J; Myllymäki SM; Trela E; Lindström R; Kaczyńska B; Englund J; Mikkola ML
    Methods Mol Biol; 2022; 2471():1-18. PubMed ID: 35175589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of a Bioengineered Lacrimal Gland by Using the Organ Germ Method.
    Hirayama M; Tsubota K; Tsuji T
    Methods Mol Biol; 2017; 1597():153-165. PubMed ID: 28361316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connexin 43 Is Necessary for Salivary Gland Branching Morphogenesis and FGF10-induced ERK1/2 Phosphorylation.
    Yamada A; Futagi M; Fukumoto E; Saito K; Yoshizaki K; Ishikawa M; Arakaki M; Hino R; Sugawara Y; Ishikawa M; Naruse M; Miyazaki K; Nakamura T; Fukumoto S
    J Biol Chem; 2016 Jan; 291(2):904-12. PubMed ID: 26565022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D Fibroblast-Epithelium Co-culture Model for Understanding Microenvironmental Role in Branching Morphogenesis of the Mammary Gland.
    Koledova Z; Lu P
    Methods Mol Biol; 2017; 1501():217-231. PubMed ID: 27796955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bud specific N-sulfation of heparan sulfate regulates Shp2-dependent FGF signaling during lacrimal gland induction.
    Pan Y; Carbe C; Powers A; Zhang EE; Esko JD; Grobe K; Feng GS; Zhang X
    Development; 2008 Jan; 135(2):301-10. PubMed ID: 18077586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.