These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38393600)

  • 1. Tumor-Microenvironment-on-Chip Platform for Assessing Drug Response in 3D Dynamic Culture.
    Aydin HB; Moon HR; Han B; Ozcelikkale A; Acar A
    Methods Mol Biol; 2024; 2764():265-278. PubMed ID: 38393600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput microfluidic 3D biomimetic model enabling quantitative description of the human breast tumor microenvironment.
    Berger Fridman I; Kostas J; Gregus M; Ray S; Sullivan MR; Ivanov AR; Cohen S; Konry T
    Acta Biomater; 2021 Sep; 132():473-488. PubMed ID: 34153511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in 3D Vascularized Tumor-on-a-Chip Technology.
    Jung S; Jo H; Hyung S; Jeon NL
    Adv Exp Med Biol; 2022; 1379():231-256. PubMed ID: 35760994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Engineered Tumor-on-a-Chip Device with Breast Cancer-Immune Cell Interactions for Assessing T-cell Recruitment.
    Aung A; Kumar V; Theprungsirikul J; Davey SK; Varghese S
    Cancer Res; 2020 Jan; 80(2):263-275. PubMed ID: 31744818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip recapitulation of the tumor microenvironment: A decade of progress.
    Giannitelli SM; Peluzzi V; Raniolo S; Roscilli G; Trombetta M; Mozetic P; Rainer A
    Biomaterials; 2024 Apr; 306():122482. PubMed ID: 38301325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Targeting of Tumor Cells in a Microfluidic Tumor Model with Multiple Cell Types.
    van de Crommert B; Palacio-CastaƱeda V; Verdurmen WPR
    Methods Mol Biol; 2024; 2804():237-251. PubMed ID: 38753152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic Detection of Apoptosis Events Via Caspase 3/7 Activation in a Tumor-Immune Microenvironment on a Chip.
    Bertani FR; Moghaddam FD; Panella C; Giannitelli SM; Peluzzi V; Gerardino A; Rainer A; Roscilli G; De Ninno A; Businaro L
    Methods Mol Biol; 2024; 2748():109-118. PubMed ID: 38070111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic Patterning-Based 3D Microfluidic Cell Culture Assay.
    Han S; Kim J; Li R; Ma A; Kwan V; Luong K; Sohn LL
    Adv Healthc Mater; 2018 Jun; 7(12):e1800122. PubMed ID: 29700986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment.
    Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ
    PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro vascularized liver and tumor tissue microenvironments on a chip for dynamic determination of nanoparticle transport and toxicity.
    Ozkan A; Ghousifam N; Hoopes PJ; Yankeelov TE; Rylander MN
    Biotechnol Bioeng; 2019 May; 116(5):1201-1219. PubMed ID: 30636289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures.
    Dornhof J; Kieninger J; Muralidharan H; Maurer J; Urban GA; Weltin A
    Lab Chip; 2022 Jan; 22(2):225-239. PubMed ID: 34851349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic technologies for anticancer drug studies.
    Valente KP; Khetani S; Kolahchi AR; Sanati-Nezhad A; Suleman A; Akbari M
    Drug Discov Today; 2017 Nov; 22(11):1654-1670. PubMed ID: 28684326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Cardiac Tissue for Advanced Heart-On-A-Chip Platforms.
    Chen X; Liu S; Han M; Long M; Li T; Hu L; Wang L; Huang W; Wu Y
    Adv Healthc Mater; 2024 Jan; 13(1):e2301338. PubMed ID: 37471526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recapitulation of dynamic nanoparticle transport around tumors using a triangular multi-chamber tumor-on-a-chip.
    Chen Y; Xue Y; Xu L; Li W; Chen Y; Zheng S; Dai R; Liu J
    Lab Chip; 2022 Oct; 22(21):4191-4204. PubMed ID: 36172838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential response to doxorubicin in breast cancer subtypes simulated by a microfluidic tumor model.
    Ozcelikkale A; Shin K; Noe-Kim V; Elzey BD; Dong Z; Zhang JT; Kim K; Kwon IC; Park K; Han B
    J Control Release; 2017 Nov; 266():129-139. PubMed ID: 28939108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new drug testing platform based on 3D tri-culture in lab-on-a-chip devices.
    Gokce B; Akcok I; Cagir A; Pesen-Okvur D
    Eur J Pharm Sci; 2020 Dec; 155():105542. PubMed ID: 32927074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validating antimetastatic effects of natural products in an engineered microfluidic platform mimicking tumor microenvironment.
    Niu Y; Bai J; Kamm RD; Wang Y; Wang C
    Mol Pharm; 2014 Jul; 11(7):2022-9. PubMed ID: 24533867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.