These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38393888)
21. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]
22. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues. Samavedi S; Vaidya P; Gaddam P; Whittington AR; Goldstein AS Biotechnol Bioeng; 2014 Dec; 111(12):2549-59. PubMed ID: 24898875 [TBL] [Abstract][Full Text] [Related]
23. Pauly HM; Sathy BN; Olvera D; McCarthy HO; Kelly DJ; Popat KC; Dunne NJ; Haut Donahue TL Tissue Eng Part A; 2017 Aug; 23(15-16):823-836. PubMed ID: 28350237 [TBL] [Abstract][Full Text] [Related]
24. Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration. Lee H; Yeo M; Ahn S; Kang DO; Jang CH; Lee H; Park GM; Kim GH J Biomed Mater Res B Appl Biomater; 2011 May; 97(2):263-70. PubMed ID: 21384546 [TBL] [Abstract][Full Text] [Related]
26. Diffusion chamber system for testing of collagen-based cell migration barriers for separation of ligament enthesis zones in tissue-engineered ACL constructs. Hahner J; Hoyer M; Hillig S; Schulze-Tanzil G; Meyer M; Schröpfer M; Lohan A; Garbe LA; Heinrich G; Breier A J Biomater Sci Polym Ed; 2015; 26(16):1085-99. PubMed ID: 26300365 [TBL] [Abstract][Full Text] [Related]
27. Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter. Grey CP; Newton ST; Bowlin GL; Haas TW; Simpson DG Biomaterials; 2013 Jul; 34(21):4993-5006. PubMed ID: 23602367 [TBL] [Abstract][Full Text] [Related]
28. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning. Lee SJ; Nowicki M; Harris B; Zhang LG Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214 [TBL] [Abstract][Full Text] [Related]
29. Human Amniotic Membrane with Aligned Electrospun Fiber as Scaffold for Aligned Tissue Regeneration. Hasmad H; Yusof MR; Mohd Razi ZR; Hj Idrus RB; Chowdhury SR Tissue Eng Part C Methods; 2018 Jun; 24(6):368-378. PubMed ID: 29690856 [TBL] [Abstract][Full Text] [Related]
30. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. Shanmugavel S; Reddy VJ; Ramakrishna S; Lakshmi BS; Dev VG J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981 [TBL] [Abstract][Full Text] [Related]
31. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration. Hejazi F; Bagheri-Khoulenjani S; Olov N; Zeini D; Solouk A; Mirzadeh H J Biomed Mater Res A; 2021 Sep; 109(9):1657-1669. PubMed ID: 33687800 [TBL] [Abstract][Full Text] [Related]
32. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Jiang W; Li L; Zhang D; Huang S; Jing Z; Wu Y; Zhao Z; Zhao L; Zhou S Acta Biomater; 2015 Oct; 25():240-52. PubMed ID: 26188325 [TBL] [Abstract][Full Text] [Related]
33. The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. Cao H; McHugh K; Chew SY; Anderson JM J Biomed Mater Res A; 2010 Jun; 93(3):1151-9. PubMed ID: 19768795 [TBL] [Abstract][Full Text] [Related]
34. Use of ultra-high molecular weight polycaprolactone scaffolds for ACL reconstruction. Leong NL; Kabir N; Arshi A; Nazemi A; Jiang J; Wu BM; Petrigliano FA; McAllister DR J Orthop Res; 2016 May; 34(5):828-35. PubMed ID: 26497133 [TBL] [Abstract][Full Text] [Related]
35. Electrospun polycaprolactone/collagen nanofibers cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/ Chen D; Zhu T; Fu W; Zhang H Int J Nanomedicine; 2019; 14():2127-2144. PubMed ID: 30988613 [TBL] [Abstract][Full Text] [Related]
36. In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering. Guo Z; Xu J; Ding S; Li H; Zhou C; Li L J Biomater Sci Polym Ed; 2015; 26(15):989-1001. PubMed ID: 26123758 [TBL] [Abstract][Full Text] [Related]
37. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Phipps MC; Clem WC; Grunda JM; Clines GA; Bellis SL Biomaterials; 2012 Jan; 33(2):524-34. PubMed ID: 22014462 [TBL] [Abstract][Full Text] [Related]
38. Core-Shell Nanofibrous Scaffolds for Repair of Meniscus Tears. Baek J; Lotz MK; D'Lima DD Tissue Eng Part A; 2019 Dec; 25(23-24):1577-1590. PubMed ID: 30950316 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of polycaprolactone scaffold with basic fibroblast growth factor and fibroblasts in an athymic rat model for anterior cruciate ligament reconstruction. Leong NL; Kabir N; Arshi A; Nazemi A; Wu B; Petrigliano FA; McAllister DR Tissue Eng Part A; 2015 Jun; 21(11-12):1859-68. PubMed ID: 25744933 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]