BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3839417)

  • 1. Molecular origin of biphasic response of main phase-transition temperature of phospholipid membranes to long-chain alcohols.
    Suezaki Y; Kamaya H; Ueda I
    Biochim Biophys Acta; 1985 Aug; 818(1):31-7. PubMed ID: 3839417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose-dependent nonlinear response of the main phase-transition temperature of phospholipid membranes to alcohols.
    Kamaya H; Ma SM; Lin SH
    J Membr Biol; 1986; 90(2):157-61. PubMed ID: 3755180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alcohol effects on rapid kinetics of water transport through lipid membranes and location of the main barrier.
    Inoue T; Kamaya H; Ueda I
    Biochim Biophys Acta; 1985 Apr; 815(1):68-74. PubMed ID: 3986204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A statistical mechanical analysis of the effect of long-chain alcohols and high pressure upon the phase transition temperature of lipid bilayer membranes.
    Suezaki Y; Tamura K; Takasaki M; Kamaya H; Ueda I
    Biochim Biophys Acta; 1991 Jul; 1066(2):225-8. PubMed ID: 1854786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High pressure antagonism of alcohol effects on the main phase-transition temperature of phospholipid membranes: biphasic response.
    Tamura K; Kaminoh Y; Kamaya H; Ueda I
    Biochim Biophys Acta; 1991 Jul; 1066(2):219-24. PubMed ID: 1854785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic differences in the perturbing ability of alkanols in bilayer: action of phospholipase A2 on the alkanol-modified phospholipid bilayer.
    Upreti GC; Rainier S; Jain MK
    J Membr Biol; 1980 Jul; 55(2):97-112. PubMed ID: 7191009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and mechanisms of monolayer interactions IV: Surface activity of alkanols and energies of their interaction with dipalmitoyllecithin and dipalmitoylphosphatidylethanolamine.
    Vilallonga FA; Garrett ER; Hunt JS
    J Pharm Sci; 1977 Sep; 66(9):1229-34. PubMed ID: 578527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular ordering and phase transitions in alkanol monolayers at the water-hexane interface.
    Tikhonov AM; Pingali SV; Schlossman ML
    J Chem Phys; 2004 Jun; 120(24):11822-38. PubMed ID: 15268217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of n-alkanols on the stationary current voltage behavior and action potential of myelinated nerve.
    Tippe A
    Biochim Biophys Acta; 1980 May; 598(1):200-5. PubMed ID: 6968222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A solid-solution theory of anesthetic interaction with lipid membranes: temperature span of the main phase transition.
    Suezaki Y; Tatara T; Kaminoh Y; Kamaya H; Ueda I
    Biochim Biophys Acta; 1990 Nov; 1029(1):143-8. PubMed ID: 2223805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipid/cholesterol membranes containing n-alkanols: a 2H-NMR study.
    Thewalt JL; Cushley RJ
    Biochim Biophys Acta; 1987 Dec; 905(2):329-38. PubMed ID: 3689784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on water evaporation through 1-alkanol monolayers by the thermogravimetry method.
    Rusdi M; Moroi Y
    J Colloid Interface Sci; 2004 Apr; 272(2):472-9. PubMed ID: 15028513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deuterium NMR study of the effect of n-alkanol anesthetics on a model membrane system.
    Thewalt JL; Wassall SR; Gorrissen H; Cushley RJ
    Biochim Biophys Acta; 1985 Jul; 817(2):355-65. PubMed ID: 4016111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic studies of branched-chain alkanols as skin permeation enhancers.
    Chantasart D; Li SK; He N; Warner KS; Prakongpan S; Higuchi WI
    J Pharm Sci; 2004 Mar; 93(3):762-79. PubMed ID: 14762914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alcohol interaction with high entropy states of macromolecules: critical temperature hypothesis for anesthesia cutoff.
    Kaminoh Y; Nishimura S; Kamaya H; Ueda I
    Biochim Biophys Acta; 1992 May; 1106(2):335-43. PubMed ID: 1596513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short chain and long chain alkanols have different sites of action on nicotinic acetylcholine receptor channels from Torpedo.
    Wood SC; Forman SA; Miller KW
    Mol Pharmacol; 1991 Mar; 39(3):332-8. PubMed ID: 1706469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural requirements of alkanol interaction sites on human alpha 2 beta 4 neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes: effects of linear and branched-chain alkanols.
    Godden EL; Dunwiddie TV
    Alcohol Clin Exp Res; 2002 Jan; 26(1):8-18. PubMed ID: 11821649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anesthetic-protein interaction. Random versus helix polylysine monolayers and interaction with 1-alkanols.
    Shibata A; Suezaki Y; Kamaya H; Ueda I
    Biochim Biophys Acta; 1984 May; 772(3):383-92. PubMed ID: 6722153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miscibility and interaction between 1-alkanol and short-chain phosphocholine in the adsorbed film and micelles.
    Takajo Y; Matsuki H; Kaneshina S; Aratono M; Yamanaka M
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):52-8. PubMed ID: 17560093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ethanol and other alkanols on the kinetics and the activation parameters of thermal death in Saccharomyces cerevisiae.
    Leão C; Van Uden N
    Biotechnol Bioeng; 1982 Jul; 24(7):1581-90. PubMed ID: 18546458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.