BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 38394177)

  • 21. Evaluation of cryoprotectant and cooling rate for sperm cryopreservation in the euryhaline fish medaka Oryzias latipes.
    Yang H; Norris M; Winn R; Tiersch TR
    Cryobiology; 2010 Oct; 61(2):211-9. PubMed ID: 20654608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of the Impact of Post-Thaw Stress Pathway Modulation on Cell Recovery following Cryopreservation in a Hematopoietic Progenitor Cell Model.
    Baust JM; Snyder KK; Van Buskirk RG; Baust JG
    Cells; 2022 Jan; 11(2):. PubMed ID: 35053394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cryopreservation of NK and T Cells Without DMSO for Adoptive Cell-Based Immunotherapy.
    Yao X; Matosevic S
    BioDrugs; 2021 Sep; 35(5):529-545. PubMed ID: 34427899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies-A Review.
    Meneghel J; Kilbride P; Morris GJ
    Front Med (Lausanne); 2020; 7():592242. PubMed ID: 33324662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cryopreservation impairs 3-D migration and cytotoxicity of natural killer cells.
    Mark C; Czerwinski T; Roessner S; Mainka A; Hörsch F; Heublein L; Winterl A; Sanokowski S; Richter S; Bauer N; Angelini TE; Schuler G; Fabry B; Voskens CJ
    Nat Commun; 2020 Oct; 11(1):5224. PubMed ID: 33067467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low DMSO Cryopreservation of Stem Cells Enabled by Macromolecular Cryoprotectants.
    Murray KA; Tomás RMF; Gibson MI
    ACS Appl Bio Mater; 2020 Sep; 3(9):5627-5632. PubMed ID: 32984779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synaptic secretion from human natural killer cells is diverse and includes supramolecular attack particles.
    Ambrose AR; Hazime KS; Worboys JD; Niembro-Vivanco O; Davis DM
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23717-23720. PubMed ID: 32900953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Freezing Technology: Control of Freezing, Thawing, and Ice Nucleation.
    Kilbride P; Meneghel J
    Methods Mol Biol; 2021; 2180():191-201. PubMed ID: 32797412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of ex vivo expanded and activated clinical-grade human NK cells after cryopreservation.
    Damodharan SN; Walker KL; Forsberg MH; McDowell KA; Bouchlaka MN; Drier DA; Sondel PM; DeSantes KB; Capitini CM
    Cytotherapy; 2020 Aug; 22(8):450-457. PubMed ID: 32536506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Post-Thaw Culture and Measurement of Total Cell Recovery Is Crucial in the Evaluation of New Macromolecular Cryoprotectants.
    Murray KA; Gibson MI
    Biomacromolecules; 2020 Jul; 21(7):2864-2873. PubMed ID: 32501710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity?
    Awan M; Buriak I; Fleck R; Fuller B; Goltsev A; Kerby J; Lowdell M; Mericka P; Petrenko A; Petrenko Y; Rogulska O; Stolzing A; Stacey GN
    Regen Med; 2020 Mar; 15(3):1463-1491. PubMed ID: 32342730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dimethyl sulfoxide-free cryopreservation for cell therapy: A review.
    Weng L; Beauchesne PR
    Cryobiology; 2020 Jun; 94():9-17. PubMed ID: 32247742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cryopreservation of primary cultures of mammalian somatic cells in 96-well plates benefits from control of ice nucleation.
    Daily MI; Whale TF; Partanen R; Harrison AD; Kilbride P; Lamb S; Morris GJ; Picton HM; Murray BJ
    Cryobiology; 2020 Apr; 93():62-69. PubMed ID: 32092295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recovery and Post-Thaw Assessment of Human Umbilical Cord Blood Cryopreserved as Quality Control Segments and Bulk Samples.
    Kilbride P; Meneghel J; Lamb S; Morris J; Pouzet J; Jurgielewicz M; Leonforte C; Gibson D; Madrigal A
    Biol Blood Marrow Transplant; 2019 Dec; 25(12):2447-2453. PubMed ID: 31499214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Technical Considerations in the Freezing, Low-Temperature Storage and Thawing of Stem Cells for Cellular Therapies.
    Hunt CJ
    Transfus Med Hemother; 2019 Jun; 46(3):134-150. PubMed ID: 31244583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physical events occurring during the cryopreservation of immortalized human T cells.
    Meneghel J; Kilbride P; Morris JG; Fonseca F
    PLoS One; 2019; 14(5):e0217304. PubMed ID: 31120989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Impact of Varying Cooling and Thawing Rates on the Quality of Cryopreserved Human Peripheral Blood T Cells.
    Baboo J; Kilbride P; Delahaye M; Milne S; Fonseca F; Blanco M; Meneghel J; Nancekievill A; Gaddum N; Morris GJ
    Sci Rep; 2019 Mar; 9(1):3417. PubMed ID: 30833714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional Assessment for Clinical Use of Serum-Free Adapted NK-92 Cells.
    Chrobok M; Dahlberg CIM; Sayitoglu EC; Beljanski V; Nahi H; Gilljam M; Stellan B; Sutlu T; Duru AD; Alici E
    Cancers (Basel); 2019 Jan; 11(1):. PubMed ID: 30634595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural killer cells might adapt their inhibitory receptors for memory.
    Cooper MA
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11357-11359. PubMed ID: 30337482
    [No Abstract]   [Full Text] [Related]  

  • 40. The global landscape of cancer cell therapy.
    Tang J; Hubbard-Lucey VM; Pearce L; O'Donnell-Tormey J; Shalabi A
    Nat Rev Drug Discov; 2018 Jul; 17(7):465-466. PubMed ID: 29795477
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.