These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 38394198)

  • 1. Reward-based option competition in human dorsal stream and transition from stochastic exploration to exploitation in continuous space.
    Hallquist MN; Hwang K; Luna B; Dombrovski AY
    Sci Adv; 2024 Feb; 10(8):eadj2219. PubMed ID: 38394198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective maintenance of value information helps resolve the exploration/exploitation dilemma.
    Hallquist MN; Dombrovski AY
    Cognition; 2019 Feb; 183():226-243. PubMed ID: 30502584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning the value of information and reward over time when solving exploration-exploitation problems.
    Cogliati Dezza I; Yu AJ; Cleeremans A; Alexander W
    Sci Rep; 2017 Dec; 7(1):16919. PubMed ID: 29209058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential reinforcement encoding along the hippocampal long axis helps resolve the explore-exploit dilemma.
    Dombrovski AY; Luna B; Hallquist MN
    Nat Commun; 2020 Oct; 11(1):5407. PubMed ID: 33106508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
    Frémaux N; Sprekeler H; Gerstner W
    PLoS Comput Biol; 2013 Apr; 9(4):e1003024. PubMed ID: 23592970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sex differences in learning from exploration.
    Chen CS; Knep E; Han A; Ebitz RB; Grissom NM
    Elife; 2021 Nov; 10():. PubMed ID: 34796870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration in neo-Hebbian reinforcement learning: Computational approaches to the exploration-exploitation balance with bio-inspired neural networks.
    Triche A; Maida AS; Kumar A
    Neural Netw; 2022 Jul; 151():16-33. PubMed ID: 35367735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient-Sensitive Reinforcement Learning in Monkeys.
    Huang FY; Grabenhorst F
    J Neurosci; 2023 Mar; 43(10):1714-1730. PubMed ID: 36669886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals.
    Basanisi R; Marche K; Combrisson E; Apicella P; Brovelli A
    J Neurosci; 2023 May; 43(18):3339-3352. PubMed ID: 37015808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning.
    Chen Z; Luo B; Hu T; Xu X
    Neural Netw; 2023 Oct; 167():450-459. PubMed ID: 37683459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalization of value in reinforcement learning by humans.
    Wimmer GE; Daw ND; Shohamy D
    Eur J Neurosci; 2012 Apr; 35(7):1092-104. PubMed ID: 22487039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sticky me: Self-relevance slows reinforcement learning.
    Golubickis M; Macrae CN
    Cognition; 2022 Oct; 227():105207. PubMed ID: 35752015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning at Variable Attentional Load Requires Cooperation of Working Memory, Meta-learning, and Attention-augmented Reinforcement Learning.
    Womelsdorf T; Watson MR; Tiesinga P
    J Cogn Neurosci; 2021 Dec; 34(1):79-107. PubMed ID: 34813644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A target-driven visual navigation method based on intrinsic motivation exploration and space topological cognition.
    Ruan X; Li P; Zhu X; Liu P
    Sci Rep; 2022 Mar; 12(1):3462. PubMed ID: 35236878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two Visual Pathways in Primates Based on Sampling of Space: Exploitation and Exploration of Visual Information.
    Sheth BR; Young R
    Front Integr Neurosci; 2016; 10():37. PubMed ID: 27920670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novelty and Inductive Generalization in Human Reinforcement Learning.
    Gershman SJ; Niv Y
    Top Cogn Sci; 2015 Jul; 7(3):391-415. PubMed ID: 25808176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The neurocomputational bases of explore-exploit decision-making.
    Hogeveen J; Mullins TS; Romero JD; Eversole E; Rogge-Obando K; Mayer AR; Costa VD
    Neuron; 2022 Jun; 110(11):1869-1879.e5. PubMed ID: 35390278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Habit formation coincides with shifts in reinforcement representations in the sensorimotor striatum.
    Smith KS; Graybiel AM
    J Neurophysiol; 2016 Mar; 115(3):1487-98. PubMed ID: 26740533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.