These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38394235)
1. Immobilization of Adenosine Derivatives onto Cellulose Nanocrystals via Click Chemistry for Biocatalysis Applications. Bourgery C; Mendoza DJ; Garnier G; Mouterde LMM; Allais F ACS Appl Mater Interfaces; 2024 Mar; 16(9):11315-11323. PubMed ID: 38394235 [TBL] [Abstract][Full Text] [Related]
2. Cellulose‑copper as bio-supported recyclable catalyst for the clickable azide-alkyne [3 + 2] cycloaddition reaction in water. Bahsis L; El Ayouchia HB; Anane H; Benhamou K; Kaddami H; Julve M; Stiriba SE Int J Biol Macromol; 2018 Nov; 119():849-856. PubMed ID: 30081123 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of Polystyrene and Poly(4-vinylpyridine) Mixed Grafted Silica Nanoparticles via a Combination of ATRP and Cu Wu L; Glebe U; Böker A Macromol Rapid Commun; 2017 Jan; 38(1):. PubMed ID: 27734553 [TBL] [Abstract][Full Text] [Related]
4. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC). Mandoli A Molecules; 2016 Sep; 21(9):. PubMed ID: 27607998 [TBL] [Abstract][Full Text] [Related]
5. Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Filpponen I; Argyropoulos DS Biomacromolecules; 2010 Apr; 11(4):1060-6. PubMed ID: 20235575 [TBL] [Abstract][Full Text] [Related]
6. Application of click chemistry to the production of DNA microarrays. Uszczyńska B; Ratajczak T; Frydrych E; Maciejewski H; Figlerowicz M; Markiewicz WT; Chmielewski MK Lab Chip; 2012 Mar; 12(6):1151-6. PubMed ID: 22318451 [TBL] [Abstract][Full Text] [Related]
7. From mechanism to mouse: a tale of two bioorthogonal reactions. Sletten EM; Bertozzi CR Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330 [TBL] [Abstract][Full Text] [Related]
8. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase. Castro V; Rodríguez H; Albericio F ACS Comb Sci; 2016 Jan; 18(1):1-14. PubMed ID: 26652044 [TBL] [Abstract][Full Text] [Related]
9. Click chemistry-based functionalization on non-oxidized silicon substrates. Li Y; Cai C Chem Asian J; 2011 Oct; 6(10):2592-605. PubMed ID: 21751406 [TBL] [Abstract][Full Text] [Related]
10. Copper-Catalyzed Alkyne-Azide Cycloaddition on the Solid Phase for the Preparation of Fully Click-Modified Nucleic Acids. Rosenthal M; Pfeiffer F; Mayer G Methods Mol Biol; 2019; 1973():177-183. PubMed ID: 31016702 [TBL] [Abstract][Full Text] [Related]
11. Click chemistry for drug delivery nanosystems. Lallana E; Sousa-Herves A; Fernandez-Trillo F; Riguera R; Fernandez-Megia E Pharm Res; 2012 Jan; 29(1):1-34. PubMed ID: 21913032 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of Porphyrin, Chlorin and Phthalocyanine Derivatives by Azide-Alkyne Click Chemistry. Acherar S; Colombeau L; Frochot C; Vanderesse R Curr Med Chem; 2015; 22(28):3217-54. PubMed ID: 26179994 [TBL] [Abstract][Full Text] [Related]
13. Steroid/triterpenoid functional molecules based on "click chemistry". Hu J; Lu JR; Ju Y Chem Asian J; 2011 Oct; 6(10):2636-47. PubMed ID: 21887746 [TBL] [Abstract][Full Text] [Related]
15. The "click" reaction involving metal azides, metal alkynes, or both: an exploration into multimetal structures. Casarrubios L; de la Torre MC; Sierra MA Chemistry; 2013 Mar; 19(11):3534-41. PubMed ID: 23418069 [TBL] [Abstract][Full Text] [Related]
16. Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions. Lallana E; Riguera R; Fernandez-Megia E Angew Chem Int Ed Engl; 2011 Sep; 50(38):8794-804. PubMed ID: 21905176 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of (1,2,3-triazol-4-yl)methyl Phosphinates and (1,2,3-Triazol-4-yl)methyl Phosphates by Copper-Catalyzed Azide-Alkyne Cycloaddition. Tripolszky A; Németh K; Szabó PT; Bálint E Molecules; 2019 May; 24(11):. PubMed ID: 31159301 [TBL] [Abstract][Full Text] [Related]
18. Modification of Protein Scaffolds via Copper-Catalyzed Azide-Alkyne Cycloaddition. Presolski S Methods Mol Biol; 2018; 1798():187-193. PubMed ID: 29868960 [TBL] [Abstract][Full Text] [Related]
19. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions. Zhang X; Liu P; Zhu L Molecules; 2016 Dec; 21(12):. PubMed ID: 27941684 [TBL] [Abstract][Full Text] [Related]
20. Copper Catalysis in Living Systems and In Situ Drug Synthesis. Clavadetscher J; Hoffmann S; Lilienkampf A; Mackay L; Yusop RM; Rider SA; Mullins JJ; Bradley M Angew Chem Int Ed Engl; 2016 Dec; 55(50):15662-15666. PubMed ID: 27860120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]