These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38394588)
1. Detecting High-Energy Neutrinos from Galactic Supernovae with ATLAS. Wen AY; Argüelles CA; Kheirandish A; Murase K Phys Rev Lett; 2024 Feb; 132(6):061001. PubMed ID: 38394588 [TBL] [Abstract][Full Text] [Related]
2. Neutrinos from Type Ia and Failed Core-Collapse Supernovae at Dark Matter Detectors. Raj N Phys Rev Lett; 2020 Apr; 124(14):141802. PubMed ID: 32338965 [TBL] [Abstract][Full Text] [Related]
3. Signals of the QCD phase transition in core-collapse supernovae. Sagert I; Fischer T; Hempel M; Pagliara G; Schaffner-Bielich J; Mezzacappa A; Thielemann FK; Liebendörfer M Phys Rev Lett; 2009 Feb; 102(8):081101. PubMed ID: 19257729 [TBL] [Abstract][Full Text] [Related]
4. TeV neutrinos and GeV photons from shock breakout in supernovae. Waxman E; Loeb A Phys Rev Lett; 2001 Aug; 87(7):071101. PubMed ID: 11497877 [TBL] [Abstract][Full Text] [Related]
6. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos. Argüelles CA; Kheirandish A; Vincent AC Phys Rev Lett; 2017 Nov; 119(20):201801. PubMed ID: 29219351 [TBL] [Abstract][Full Text] [Related]
7. Detection of neutrinos from supernovae in nearby galaxies. Ando S; Beacom JF; Yüksel H Phys Rev Lett; 2005 Oct; 95(17):171101. PubMed ID: 16383813 [TBL] [Abstract][Full Text] [Related]
8. High energy neutrinos from gamma-ray bursts with precursor supernovae. Razzaque S; Mészáros P; Waxman E Phys Rev Lett; 2003 Jun; 90(24):241103. PubMed ID: 12857183 [TBL] [Abstract][Full Text] [Related]
9. Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling. Martínez-Pinedo G; Fischer T; Lohs A; Huther L Phys Rev Lett; 2012 Dec; 109(25):251104. PubMed ID: 23368446 [TBL] [Abstract][Full Text] [Related]
10. Mu-Tau Neutrinos: Influencing Fast Flavor Conversions in Supernovae. Capozzi F; Chakraborty M; Chakraborty S; Sen M Phys Rev Lett; 2020 Dec; 125(25):251801. PubMed ID: 33416371 [TBL] [Abstract][Full Text] [Related]
11. Diffuse neutrino background from past core collapse supernovae. Ando S; Ekanger N; Horiuchi S; Koshio Y Proc Jpn Acad Ser B Phys Biol Sci; 2023; 99(10):460-479. PubMed ID: 38072453 [TBL] [Abstract][Full Text] [Related]
12. Solar neutrinos, helioseismology and the solar internal dynamics. Turck-Chièze S; Couvidat S Rep Prog Phys; 2011 Aug; 74(8):. PubMed ID: 34996296 [TBL] [Abstract][Full Text] [Related]
14. High energy neutrinos from the Fermi bubbles. Lunardini C; Razzaque S Phys Rev Lett; 2012 Jun; 108(22):221102. PubMed ID: 23003584 [TBL] [Abstract][Full Text] [Related]
15. Constraining the spectrum of supernova neutrinos from nu-process induced light element synthesis. Yoshida T; Kajino T; Hartmann DH Phys Rev Lett; 2005 Jun; 94(23):231101. PubMed ID: 16090455 [TBL] [Abstract][Full Text] [Related]
16. Active Galactic Nuclei Jets as the Origin of Ultrahigh-Energy Cosmic Rays and Perspectives for the Detection of Astrophysical Source Neutrinos at EeV Energies. Rodrigues X; Heinze J; Palladino A; van Vliet A; Winter W Phys Rev Lett; 2021 May; 126(19):191101. PubMed ID: 34047601 [TBL] [Abstract][Full Text] [Related]
17. Coherent development of neutrino flavor in the supernova environment. Duan H; Fuller GM; Carlson J; Qian YZ Phys Rev Lett; 2006 Dec; 97(24):241101. PubMed ID: 17280265 [TBL] [Abstract][Full Text] [Related]
18. Testing the Origins of Neutrino Mass with Supernova-Neutrino Time Delay. Ge SF; Kong CF; Smirnov AY Phys Rev Lett; 2024 Sep; 133(12):121802. PubMed ID: 39373433 [TBL] [Abstract][Full Text] [Related]