These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38394596)

  • 1. Combining Critical and Quantum Metrology.
    Hotter C; Ritsch H; Gietka K
    Phys Rev Lett; 2024 Feb; 132(6):060801. PubMed ID: 38394596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classical description of the parameter space geometry in the Dicke and Lipkin-Meshkov-Glick models.
    Gonzalez D; Gutiérrez-Ruiz D; Vergara JD
    Phys Rev E; 2021 Jul; 104(1-1):014113. PubMed ID: 34412288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission estimation at the quantum Cramér-Rao bound with macroscopic quantum light.
    Woodworth TS; Hermann-Avigliano C; Chan KWC; Marino AM
    EPJ Quantum Technol; 2022; 9(1):38. PubMed ID: 36573927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonadiabatic dynamics of the excited states for the Lipkin-Meshkov-Glick model.
    Kopylov W; Schaller G; Brandes T
    Phys Rev E; 2017 Jul; 96(1-1):012153. PubMed ID: 29347272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excited-state quantum phase transitions in the anharmonic Lipkin-Meshkov-Glick model: Static aspects.
    Gamito J; Khalouf-Rivera J; Arias JM; Pérez-Fernández P; Pérez-Bernal F
    Phys Rev E; 2022 Oct; 106(4-1):044125. PubMed ID: 36397542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum metrology in open systems: dissipative Cramér-Rao bound.
    Alipour S; Mehboudi M; Rezakhani AT
    Phys Rev Lett; 2014 Mar; 112(12):120405. PubMed ID: 24724633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Heisenberg scaling in non-Hermitian metrology at the quantum regime.
    Yu X; Zhao X; Li L; Hu XM; Duan X; Yuan H; Zhang C
    Sci Adv; 2024 May; 10(19):eadk7616. PubMed ID: 38728399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians.
    Pang S; Jordan AN
    Nat Commun; 2017 Mar; 8():14695. PubMed ID: 28276428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shortcut-to-Adiabaticity-Like Techniques for Parameter Estimation in Quantum Metrology.
    Cabedo-Olaya M; Muga JG; Martínez-Garaot S
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excited-state quantum phase transitions in the anharmonic Lipkin-Meshkov-Glick model: Dynamical aspects.
    Khalouf-Rivera J; Gamito J; Pérez-Bernal F; Arias JM; Pérez-Fernández P
    Phys Rev E; 2023 Jun; 107(6-1):064134. PubMed ID: 37464676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of mixed permutation symmetry sectors in the thermodynamic limit of critical three-level Lipkin-Meshkov-Glick atom models.
    Calixto M; Mayorgas A; Guerrero J
    Phys Rev E; 2021 Jan; 103(1-1):012116. PubMed ID: 33601600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dicke State Generation and Extreme Spin Squeezing via Rapid Adiabatic Passage.
    Carrasco SC; Goerz MH; Malinovskaya SA; Vuletić V; Schleich WP; Malinovsky VS
    Phys Rev Lett; 2024 Apr; 132(15):153603. PubMed ID: 38682989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchies of Frequentist Bounds for Quantum Metrology: From Cramér-Rao to Barankin.
    Gessner M; Smerzi A
    Phys Rev Lett; 2023 Jun; 130(26):260801. PubMed ID: 37450793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In- and out-of-equilibrium quantum metrology with mean-field quantum criticality.
    Wald S; Moreira SV; Semião FL
    Phys Rev E; 2020 May; 101(5-1):052107. PubMed ID: 32575218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Critical Metrology.
    Frérot I; Roscilde T
    Phys Rev Lett; 2018 Jul; 121(2):020402. PubMed ID: 30085745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global quantum discord in the Lipkin-Meshkov-Glick model at zero and finite temperatures.
    Bao J; Liu YH; Guo B
    J Phys Condens Matter; 2021 Sep; 33(49):. PubMed ID: 34517354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ac-Driven quantum phase transition in the Lipkin-Meshkov-Glick model.
    Engelhardt G; Bastidas VM; Emary C; Brandes T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052110. PubMed ID: 23767490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Floquet Engineering to Overcome No-Go Theorem of Noisy Quantum Metrology.
    Bai SY; An JH
    Phys Rev Lett; 2023 Aug; 131(5):050801. PubMed ID: 37595225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum thermodynamic cycle with quantum phase transition.
    Ma YH; Su SH; Sun CP
    Phys Rev E; 2017 Aug; 96(2-1):022143. PubMed ID: 28950560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the Holevo Cramér-Rao Bound for Multiparameter Quantum Metrology.
    Albarelli F; Friel JF; Datta A
    Phys Rev Lett; 2019 Nov; 123(20):200503. PubMed ID: 31809066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.