These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38394691)

  • 1. Machine Learning Deciphered Molecular Mechanistics with Accurate Kinetic and Thermodynamic Prediction.
    Dong J; Wang S; Cui W; Sun X; Guo H; Yan H; Vogel H; Wang Z; Yuan S
    J Chem Theory Comput; 2024 Jun; 20(11):4499-4513. PubMed ID: 38394691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-time methods for molecular dynamics simulations: Markov State Models and Milestoning.
    Narayan B; Yuan Y; Fathizadeh A; Elber R; Buchete NV
    Prog Mol Biol Transl Sci; 2020; 170():215-237. PubMed ID: 32145946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolving Protein Conformational Plasticity and Substrate Binding via Machine Learning.
    Ahalawat N; Sahil M; Mondal J
    J Chem Theory Comput; 2023 May; 19(9):2644-2657. PubMed ID: 37068044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Hot Spots at Myeloid Cell Leukemia-1-Inhibitor Interface Using Energy Estimation and Alanine Scanning Mutagenesis.
    Marimuthu P; Singaravelu K
    Biochemistry; 2018 Feb; 57(7):1249-1261. PubMed ID: 29345906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward High-Throughput Predictive Modeling of Protein Binding/Unbinding Kinetics.
    Chiu SH; Xie L
    J Chem Inf Model; 2016 Jun; 56(6):1164-74. PubMed ID: 27159844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Markov State Models to Elucidate Ligand Binding Mechanism.
    Ge Y; Voelz VA
    Methods Mol Biol; 2021; 2266():239-259. PubMed ID: 33759131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variational embedding of protein folding simulations using Gaussian mixture variational autoencoders.
    Ghorbani M; Prasad S; Klauda JB; Brooks BR
    J Chem Phys; 2021 Nov; 155(19):194108. PubMed ID: 34800961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing Kinetic Network Models to Elucidate Mechanisms of Functional Conformational Changes of Enzymes and Their Recognition with Ligands.
    Zhang L; Jiang H; Sheong FK; Pardo-Avila F; Cheung PP; Huang X
    Methods Enzymol; 2016; 578():343-71. PubMed ID: 27497174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Generation of Dynamic Protein Conformational Ensembles.
    Zheng LE; Barethiya S; Nordquist E; Chen J
    Molecules; 2023 May; 28(10):. PubMed ID: 37241789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic distance and kinetic maps from molecular dynamics simulation.
    Noé F; Clementi C
    J Chem Theory Comput; 2015 Oct; 11(10):5002-11. PubMed ID: 26574285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensemble-based methods for describing protein dynamics.
    Jacobs DJ
    Curr Opin Pharmacol; 2010 Dec; 10(6):760-9. PubMed ID: 20965786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of structural arrangement of cells and collective calcium transients: an integrated framework combining live cell imaging using confocal microscopy and UMAP-assisted HDBSCAN-based approach.
    Gare S; Chel S; Abhinav TK; Dhyani V; Jana S; Giri L
    Integr Biol (Camb); 2022 Dec; 14(8-12):184-203. PubMed ID: 36670549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VAMPnets for deep learning of molecular kinetics.
    Mardt A; Pasquali L; Wu H; Noé F
    Nat Commun; 2018 Jan; 9(1):5. PubMed ID: 29295994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Integrated Markov State Model and Path Metadynamics Approach To Characterize Drug Binding Processes.
    Bernetti M; Masetti M; Recanatini M; Amaro RE; Cavalli A
    J Chem Theory Comput; 2019 Oct; 15(10):5689-5702. PubMed ID: 31436987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational analysis of replica exchange MD: Temperature-dependent Markov networks for FF amyloid peptides.
    Narayan B; Herbert C; Yuan Y; Rodriguez BJ; Brooks BR; Buchete NV
    J Chem Phys; 2018 Aug; 149(7):072323. PubMed ID: 30134732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning.
    Konovalov KA; Unarta IC; Cao S; Goonetilleke EC; Huang X
    JACS Au; 2021 Sep; 1(9):1330-1341. PubMed ID: 34604842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations.
    Manda T; Barasa GO; Louis H; Irfan A; Agumba JO; Lugasi SO; Pembere AMS
    J Mol Model; 2024 Jan; 30(2):43. PubMed ID: 38236500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis.
    Yao XQ; Hamelberg D
    Acc Chem Res; 2019 Dec; 52(12):3455-3464. PubMed ID: 31793290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Derived Collective Variables for the Study of Protein Homodimerization in Membrane.
    Majumder A; Straub JE
    J Chem Theory Comput; 2024 Jul; 20(13):5774-5783. PubMed ID: 38918177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.