These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38394953)

  • 1. Does crouch alter the effects of neuromuscular impairments on gait? A simulation study.
    Kuska EC; Steele KM
    J Biomech; 2024 Mar; 165():112015. PubMed ID: 38394953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Number of synergies impacts sensitivity of gait to weakness and contracture.
    Kuska EC; Mehrabi N; Schwartz MH; Steele KM
    J Biomech; 2022 Mar; 134():111012. PubMed ID: 35219146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual muscle force-energy rate is altered during crouch gait: A neuro-musculoskeletal evaluation.
    Ravera EP; Crespo MJ; Rozumalski A
    J Biomech; 2022 Jun; 139():111141. PubMed ID: 35609492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children.
    Fox AS; Carty CP; Modenese L; Barber LA; Lichtwark GA
    Gait Posture; 2018 Mar; 61():169-175. PubMed ID: 29353741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergies are minimally affected during emulation of cerebral palsy gait patterns.
    Spomer AM; Yan RZ; Schwartz MH; Steele KM
    J Biomech; 2022 Mar; 133():110953. PubMed ID: 35092908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How much muscle strength is required to walk in a crouch gait?
    Steele KM; van der Krogt MM; Schwartz MH; Delp SL
    J Biomech; 2012 Oct; 45(15):2564-9. PubMed ID: 22959837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of surgical and non-surgical management of crouch gait in cerebral palsy: A systematic review.
    Galey SA; Lerner ZF; Bulea TC; Zimbler S; Damiano DL
    Gait Posture; 2017 May; 54():93-105. PubMed ID: 28279852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of simulated crouch gait on foot kinematics and kinetics in healthy children.
    Balzer J; Schelldorfer S; Bauer C; van der Linden ML
    Gait Posture; 2013 Sep; 38(4):619-24. PubMed ID: 23473807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of a short walking exercise on gait kinematics in children with cerebral palsy who walk in a crouch gait.
    Parent A; Raison M; Pouliot-Laforte A; Marois P; Maltais DB; Ballaz L
    Clin Biomech (Bristol, Avon); 2016 May; 34():18-21. PubMed ID: 27038653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.
    Lerner ZF; Damiano DL; Park HS; Gravunder AJ; Bulea TC
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):650-659. PubMed ID: 27479974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crouched posture maximizes ground reaction forces generated by muscles.
    Hoang HX; Reinbolt JA
    Gait Posture; 2012 Jul; 36(3):405-8. PubMed ID: 22542242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of crouch gait on sagittal trunk position and lower lumbar spinal loading in children with cerebral palsy.
    Kiernan D; O'Sullivan R
    Gait Posture; 2019 Jan; 67():65-70. PubMed ID: 30290367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle contributions to support and progression during single-limb stance in crouch gait.
    Steele KM; Seth A; Hicks JL; Schwartz MS; Delp SL
    J Biomech; 2010 Aug; 43(11):2099-105. PubMed ID: 20493489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics associated with improved knee extension after strength training for individuals with cerebral palsy and crouch gait.
    Steele KM; Damiano DL; Eek MN; Unger M; Delp SL
    J Pediatr Rehabil Med; 2012; 5(2):99-106. PubMed ID: 22699100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations.
    Ong CF; Geijtenbeek T; Hicks JL; Delp SL
    PLoS Comput Biol; 2019 Oct; 15(10):e1006993. PubMed ID: 31589597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of hip muscle weakness and femoral bony deformities on gait performance.
    Vandekerckhove I; Wesseling M; Kainz H; Desloovere K; Jonkers I
    Gait Posture; 2021 Jan; 83():280-286. PubMed ID: 33227606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robotic exoskeleton to treat crouch gait from cerebral palsy: Initial kinematic and neuromuscular evaluation.
    Lerner ZF; Damiano DL; Bulea TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2214-2217. PubMed ID: 28324959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground reaction and solid ankle-foot orthoses are equivalent for the correction of crouch gait in children with cerebral palsy.
    Ries AJ; Schwartz MH
    Dev Med Child Neurol; 2019 Feb; 61(2):219-225. PubMed ID: 30146679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressive tibiofemoral force during crouch gait.
    Steele KM; Demers MS; Schwartz MH; Delp SL
    Gait Posture; 2012 Apr; 35(4):556-60. PubMed ID: 22206783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hamstring and psoas length of crouch gait in cerebral palsy: a comparison with induced crouch gait in age- and sex-matched controls.
    Rhie TY; Sung KH; Park MS; Lee KM; Chung CY
    J Neuroeng Rehabil; 2013 Jan; 10():10. PubMed ID: 23363928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.