These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38395100)

  • 21. Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes.
    Putra NE; Leeflang MA; Klimopoulou M; Dong J; Taheri P; Huan Z; Fratila-Apachitei LE; Mol JMC; Chang J; Zhou J; Zadpoor AA
    Acta Biomater; 2023 May; 162():182-198. PubMed ID: 36972809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication and Properties of Biodegradable Akermanite-Reinforced Fe35Mn Alloys for Temporary Orthopedic Implant Applications.
    Zhang M; Yang N; Dehghan-Manshadi A; Venezuela J; Bermingham MJ; Dargusch MS
    ACS Biomater Sci Eng; 2023 Mar; 9(3):1261-1273. PubMed ID: 36808972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Additively manufactured biodegradable porous zinc.
    Li Y; Pavanram P; Zhou J; Lietaert K; Taheri P; Li W; San H; Leeflang MA; Mol JMC; Jahr H; Zadpoor AA
    Acta Biomater; 2020 Jan; 101():609-623. PubMed ID: 31672587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microstructure, mechanical properties, degradation behavior, and biocompatibility of porous Fe-Mn alloys fabricated by sponge impregnation and sintering techniques.
    Liu P; Zhang D; Dai Y; Lin J; Li Y; Wen C
    Acta Biomater; 2020 Sep; 114():485-496. PubMed ID: 32738505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.
    Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J
    J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical and Biological Properties of a Biodegradable Mg-Zn-Ca Porous Alloy.
    Zhang YQ; Li Y; Liu H; Bai J; Bao NR; Zhang Y; He P; Zhao JN; Tao L; Xue F; Zhou GX; Fan GT
    Orthop Surg; 2018 May; 10(2):160-168. PubMed ID: 29767463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extrusion-based 3D printed biodegradable porous iron.
    Putra NE; Leeflang MA; Minneboo M; Taheri P; Fratila-Apachitei LE; Mol JMC; Zhou J; Zadpoor AA
    Acta Biomater; 2021 Feb; 121():741-756. PubMed ID: 33221501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Damage evaluation of HAp-coated porous titanium foam in simulated body fluid based on compression fatigue behavior.
    Raihan MM; Otsuka Y; Tsuchida K; Manonukul A; Ohnuma K; Miyashita Y
    J Mech Behav Biomed Mater; 2021 May; 117():104383. PubMed ID: 33596530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.
    Melancon D; Bagheri ZS; Johnston RB; Liu L; Tanzer M; Pasini D
    Acta Biomater; 2017 Nov; 63():350-368. PubMed ID: 28927929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load.
    Lietaert K; Cutolo A; Boey D; Van Hooreweder B
    Sci Rep; 2018 Mar; 8(1):4957. PubMed ID: 29563593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro and in vivo corrosion properties of new iron-manganese alloys designed for cardiovascular applications.
    Drynda A; Hassel T; Bach FW; Peuster M
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):649-60. PubMed ID: 24976236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds.
    Dong J; Lin P; Putra NE; Tümer N; Leeflang MA; Huan Z; Fratila-Apachitei LE; Chang J; Zadpoor AA; Zhou J
    Acta Biomater; 2022 Oct; 151():628-646. PubMed ID: 35940565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fatigue and quasi-static mechanical behavior of bio-degradable porous biomaterials based on magnesium alloys.
    Hedayati R; Ahmadi SM; Lietaert K; Tümer N; Li Y; Amin Yavari S; Zadpoor AA
    J Biomed Mater Res A; 2018 Jul; 106(7):1798-1811. PubMed ID: 29468807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications.
    Li Y; Ding Y; Munir K; Lin J; Brandt M; Atrens A; Xiao Y; Kanwar JR; Wen C
    Acta Biomater; 2019 Mar; 87():273-284. PubMed ID: 30690210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extrusion-based 3D printed magnesium scaffolds with multifunctional MgF
    Dong J; Tümer N; Putra NE; Zhu J; Li Y; Leeflang MA; Taheri P; Fratila-Apachitei LE; Mol JMC; Zadpoor AA; Zhou J
    Biomater Sci; 2021 Oct; 9(21):7159-7182. PubMed ID: 34549742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of added porosity on a novel porous Ti-Nb-Ta-Fe-Mn alloy exposed to simulated body fluid.
    Guerra C; Sancy M; Walczak M; Martínez C; Ringuedé A; Cassir M; Han J; Ogle K; de Melo HG; Salinas V; Aguilar C
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110758. PubMed ID: 32279776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid.
    Bobby Kannan M; Singh Raman RK; Witte F; Blawert C; Dietzel W
    J Biomed Mater Res B Appl Biomater; 2011 Feb; 96(2):303-9. PubMed ID: 21210510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compression fatigue behavior of laser processed porous NiTi alloy.
    Bernard S; Krishna Balla V; Bose S; Bandyopadhyay A
    J Mech Behav Biomed Mater; 2012 Sep; 13():62-8. PubMed ID: 22842276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment.
    Jafari S; Raman RKS; Davies CHJ; Hofstetter J; Uggowitzer PJ; Löffler JF
    J Mech Behav Biomed Mater; 2017 Jan; 65():634-643. PubMed ID: 27741493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.