BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38395718)

  • 1. Adaptive robust control with slipping parameters estimation based on intelligent learning for wheeled mobile robot.
    Korayem MH; Safarbali M; Lademakhi NY
    ISA Trans; 2024 Apr; 147():577-589. PubMed ID: 38395718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust forward\backward control of wheeled mobile robots.
    Keymasi Khalaji A; Jalalnezhad M
    ISA Trans; 2021 Sep; 115():32-45. PubMed ID: 33454057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential flatness-based adaptive robust tracking control for wheeled mobile robots with slippage disturbances.
    Yuan W; Liu Y; Liu YH; Su CY
    ISA Trans; 2024 Jan; 144():482-489. PubMed ID: 37953078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics modeling and path following controller of tractor-trailer-wheeled robots considering wheels slip.
    Babaei Robat A; Arezoo K; Alipour K; Tarvirdizadeh B
    ISA Trans; 2024 May; 148():45-63. PubMed ID: 38480087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Tracking Control of Wheeled Mobile Robot Based on Differential Flatness and Sliding Active Disturbance Rejection Control: Simulations and Experiments.
    Abadi A; Ayeb A; Labbadi M; Fofi D; Bakir T; Mekki H
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinated control of slip ratio for wheeled mobile robots climbing loose sloped terrain.
    Li Z; Wang Y
    ScientificWorldJournal; 2014; 2014():396382. PubMed ID: 25276849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction.
    Li Z; Wang Y; Liu Z
    PLoS One; 2016; 11(7):e0158492. PubMed ID: 27467703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observer-based finite-time control for trajectory tracking of wheeled mobile robots with kinematic disturbances.
    Miranda-Colorado R
    ISA Trans; 2024 May; 148():64-77. PubMed ID: 38580577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trajectory tracking nonlinear H
    Rodríguez-Arellano JA; Miranda-Colorado R; Aguilar LT; Negrete-Villanueva MA
    ISA Trans; 2023 Nov; 142():372-385. PubMed ID: 37550120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sliding mode observer-based model predictive tracking control for Mecanum-wheeled mobile robot.
    Wang D; Gao Y; Wei W; Yu Q; Wei Y; Li W; Fan Z
    ISA Trans; 2024 Jun; ():. PubMed ID: 38945763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic event-driven neural network-based adaptive fault-attack-tolerant control for wheeled mobile robot system.
    Guo B; Dian S; Zhao T; Wang X
    ISA Trans; 2023 Sep; 140():71-83. PubMed ID: 37349191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of slip rate-dependent traversability for path planning of wheeled mobile robot in sandy terrain.
    Sakayori G; Ishigami G
    Front Robot AI; 2024; 11():1320261. PubMed ID: 38332951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-loop tracking control for a wheeled mobile robot with unmodeled dynamics along right angle roads.
    Zhao L; Li J; Li H; Liu B
    ISA Trans; 2023 May; 136():525-534. PubMed ID: 36376107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-learning sliding mode control based on adaptive dynamic programming for nonholonomic mobile robots.
    Ma Q; Zhang X; Xu X; Yang Y; Wu EQ
    ISA Trans; 2023 Nov; 142():136-147. PubMed ID: 37599205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model Predictive Torque Control for Velocity Tracking of a Four-Wheeled Climbing Robot.
    Santos HB; Teixeira MAS; Dalmedico N; de Oliveira AS; Neves-Jr F; Ramos JE; de Arruda LVR
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct adaptive robust tracking control for 6 DOF industrial robot with enhanced accuracy.
    Yin X; Pan L
    ISA Trans; 2018 Jan; 72():178-184. PubMed ID: 29173961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on slipping-pattern recognition and positioning error compensation of wheeled robot.
    Chen Y; Ren C; Liu H; Gu C
    Rev Sci Instrum; 2021 Aug; 92(8):085107. PubMed ID: 34470372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion.
    Chen T; Chen L; Xu X; Cai Y; Jiang H; Sun X
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29677124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement Learning-Based Tracking Control for a Three Mecanum Wheeled Mobile Robot.
    Zhang D; Wang G; Wu Z
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; PP():. PubMed ID: 35776815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach.
    Xu D; Zhao D; Yi J; Tan X
    IEEE Trans Syst Man Cybern B Cybern; 2009 Jun; 39(3):788-99. PubMed ID: 19336336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.