These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38395871)

  • 1. SHARE-Topic: Bayesian interpretable modeling of single-cell multi-omic data.
    Kazwini NE; Sanguinetti G
    Genome Biol; 2024 Feb; 25(1):55. PubMed ID: 38395871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning Consistency and Specificity of Cells From Single-Cell Multi-Omic Data.
    Wang H; Liu Z; Ma X
    IEEE J Biomed Health Inform; 2024 May; 28(5):3134-3145. PubMed ID: 38709615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian integrative analysis of epigenomic and transcriptomic data identifies Alzheimer's disease candidate genes and networks.
    Klein HU; Schäfer M; Bennett DA; Schwender H; De Jager PL
    PLoS Comput Biol; 2020 Apr; 16(4):e1007771. PubMed ID: 32255787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative analysis of multi-omics and imaging data with incorporation of biological information via structural Bayesian factor analysis.
    Bao J; Chang C; Zhang Q; Saykin AJ; Shen L; Long Q;
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36882008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A supervised Bayesian factor model for the identification of multi-omics signatures.
    Gygi JP; Konstorum A; Pawar S; Aron E; Kleinstein SH; Guan L
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38603606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A primer on correlation-based dimension reduction methods for multi-omics analysis.
    Downing T; Angelopoulos N
    J R Soc Interface; 2023 Oct; 20(207):20230344. PubMed ID: 37817584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to modeling multifactorial diseases using Ensemble Bayesian Rule classifiers.
    Balasubramanian JB; Boes RD; Gopalakrishnan V
    J Biomed Inform; 2020 Jul; 107():103455. PubMed ID: 32497685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SCRaPL: A Bayesian hierarchical framework for detecting technical associates in single cell multiomics data.
    Maniatis C; Vallejos CA; Sanguinetti G
    PLoS Comput Biol; 2022 Jun; 18(6):e1010163. PubMed ID: 35727848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiomics Integration at Single-Cell Resolution Using Bayesian Networks: A Case Study in Hepatocellular Carcinoma.
    Jihad M; Yet İ
    OMICS; 2023 Jan; 27(1):24-33. PubMed ID: 36602810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NetMIM: network-based multi-omics integration with block missingness for biomarker selection and disease outcome prediction.
    Zhu B; Zhang Z; Leung SY; Fan X
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39288230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data.
    Kim D; Tran A; Kim HJ; Lin Y; Yang JYH; Yang P
    NPJ Syst Biol Appl; 2023 Oct; 9(1):51. PubMed ID: 37857632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iPoLNG-An unsupervised model for the integrative analysis of single-cell multiomics data.
    Zhang W; Lin Z
    Front Genet; 2023; 14():998504. PubMed ID: 36865385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotype prediction using biologically interpretable neural networks on multi-cohort multi-omics data.
    van Hilten A; van Rooij J; ; Ikram MA; Niessen WJ; van Meurs JBJ; Roshchupkin GV
    NPJ Syst Biol Appl; 2024 Aug; 10(1):81. PubMed ID: 39095438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian variable selection with graphical structure learning: Applications in integrative genomics.
    Kundu S; Cheng Y; Shin M; Manyam G; Mallick BK; Baladandayuthapani V
    PLoS One; 2018; 13(7):e0195070. PubMed ID: 30059495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data.
    Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y
    Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-omic lineage tracing predicts the transcriptional, epigenetic and genetic determinants of cancer evolution.
    Nadalin F; Marzi MJ; Pirra Piscazzi M; Fuentes-Bravo P; Procaccia S; Climent M; Bonetti P; Rubolino C; Giuliani B; Papatheodorou I; Marioni JC; Nicassio F
    Nat Commun; 2024 Sep; 15(1):7609. PubMed ID: 39218912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell multi-omics sequencing and its application in tumor heterogeneity.
    Sun Y; Liu Z; Fu Y; Yang Y; Lu J; Pan M; Wen T; Xie X; Bai Y; Ge Q
    Brief Funct Genomics; 2023 Jul; 22(4):313-328. PubMed ID: 37078714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-omics based artificial intelligence for cancer research.
    Li L; Sun M; Wang J; Wan S
    Adv Cancer Res; 2024; 163():303-356. PubMed ID: 39271266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scMET: Bayesian modeling of DNA methylation heterogeneity at single-cell resolution.
    Kapourani CA; Argelaguet R; Sanguinetti G; Vallejos CA
    Genome Biol; 2021 Apr; 22(1):114. PubMed ID: 33879195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell multi-omic topic embedding reveals cell-type-specific and COVID-19 severity-related immune signatures.
    Zhou M; Zhang H; Baii Z; Mann-Krzisnik D; Wang F; Li Y
    bioRxiv; 2023 Jun; ():. PubMed ID: 36778483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.