These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38395961)

  • 21. Checking the STEP-Associated Trafficking and Internalization of Glutamate Receptors for Reduced Cognitive Deficits: A Machine Learning Approach-Based Cheminformatics Study and Its Application for Drug Repurposing.
    Jamal S; Goyal S; Shanker A; Grover A
    PLoS One; 2015; 10(6):e0129370. PubMed ID: 26066505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods.
    Hua Y; Shi Y; Cui X; Li X
    Mol Divers; 2021 Aug; 25(3):1585-1596. PubMed ID: 34196933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of ADME properties with substructure pattern recognition.
    Shen J; Cheng F; Xu Y; Li W; Tang Y
    J Chem Inf Model; 2010 Jun; 50(6):1034-41. PubMed ID: 20578727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Latent semantic structure indexing (LaSSI) for defining chemical similarity.
    Hull RD; Singh SB; Nachbar RB; Sheridan RP; Kearsley SK; Fluder EM
    J Med Chem; 2001 Apr; 44(8):1177-84. PubMed ID: 11312917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review on machine learning approaches and trends in drug discovery.
    Carracedo-Reboredo P; Liñares-Blanco J; Rodríguez-Fernández N; Cedrón F; Novoa FJ; Carballal A; Maojo V; Pazos A; Fernandez-Lozano C
    Comput Struct Biotechnol J; 2021; 19():4538-4558. PubMed ID: 34471498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Descriptor-augmented machine learning for enzyme-chemical interaction predictions.
    Han Y; Zhang H; Zeng Z; Liu Z; Lu D; Liu Z
    Synth Syst Biotechnol; 2024 Jun; 9(2):259-268. PubMed ID: 38450325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Ensemble Structure and Physicochemical (SPOC) Descriptor for Machine-Learning Prediction of Chemical Reaction and Molecular Properties.
    Yang Q; Liu Y; Cheng J; Li Y; Liu S; Duan Y; Zhang L; Luo S
    Chemphyschem; 2022 Jul; 23(14):e202200255. PubMed ID: 35478429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discriminative Chemical Patterns: Automatic and Interactive Design.
    Bietz S; Schomburg KT; Hilbig M; Rarey M
    J Chem Inf Model; 2015 Aug; 55(8):1535-46. PubMed ID: 26268674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance prediction of polymer-fullerene organic solar cells and data mining-assisted designing of new polymers.
    Xiao F; Saqib M; Razzaq S; Mubashir T; Tahir MH; Moussa IM; El-Ansary HO
    J Mol Model; 2023 Aug; 29(8):270. PubMed ID: 37530879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advancements in Ligand-Based Virtual Screening through the Synergistic Integration of Graph Neural Networks and Expert-Crafted Descriptors.
    Liu YL; Moretti R; Wang Y; Dong H; Yan B; Bodenheimer B; Derr T; Meiler J
    bioRxiv; 2024 Jul; ():. PubMed ID: 37131837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Learning Total Energies and Orbital Energies of Large Organic Molecules Using Hybridization of Molecular Fingerprints.
    Rahaman O; Gagliardi A
    J Chem Inf Model; 2020 Dec; 60(12):5971-5983. PubMed ID: 33118351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ChemDes: an integrated web-based platform for molecular descriptor and fingerprint computation.
    Dong J; Cao DS; Miao HY; Liu S; Deng BC; Yun YH; Wang NN; Lu AP; Zeng WB; Chen AF
    J Cheminform; 2015; 7():60. PubMed ID: 26664458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-Step Retrosynthesis Prediction Based on the Identification of Potential Disconnection Sites Using Molecular Substructure Fingerprints.
    Hasic H; Ishida T
    J Chem Inf Model; 2021 Feb; 61(2):641-652. PubMed ID: 33534997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artificial Intelligence-Based Toxicity Prediction of Environmental Chemicals: Future Directions for Chemical Management Applications.
    Jeong J; Choi J
    Environ Sci Technol; 2022 Jun; 56(12):7532-7543. PubMed ID: 35666838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set.
    Klimenko K; Marcou G; Horvath D; Varnek A
    J Chem Inf Model; 2016 Aug; 56(8):1438-54. PubMed ID: 27410486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypergraph-based persistent cohomology (HPC) for molecular representations in drug design.
    Liu X; Wang X; Wu J; Xia K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33480394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient substructure searching of large chemical libraries: the ABCD chemical cartridge.
    Agrafiotis DK; Lobanov VS; Shemanarev M; Rassokhin DN; Izrailev S; Jaeger EP; Alex S; Farnum M
    J Chem Inf Model; 2011 Dec; 51(12):3113-30. PubMed ID: 22035187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Random Forest Model to Predict the Activity of a Large Set of Soluble Epoxide Hydrolase Inhibitors Solely Based on a Set of Simple Fragmental Descriptors.
    Shamsara J
    Comb Chem High Throughput Screen; 2019; 22(8):555-569. PubMed ID: 31622216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular graph convolutions: moving beyond fingerprints.
    Kearnes S; McCloskey K; Berndl M; Pande V; Riley P
    J Comput Aided Mol Des; 2016 Aug; 30(8):595-608. PubMed ID: 27558503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.