These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 38396068)

  • 1. Cardio-audio synchronization elicits neural and cardiac surprise responses in human wakefulness and sleep.
    Pelentritou A; Pfeiffer C; Schwartz S; De Lucia M
    Commun Biol; 2024 Feb; 7(1):226. PubMed ID: 38396068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardio-audio synchronization drives neural surprise response.
    Pfeiffer C; De Lucia M
    Sci Rep; 2017 Nov; 7(1):14842. PubMed ID: 29093486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep Disrupts High-Level Speech Parsing Despite Significant Basic Auditory Processing.
    Makov S; Sharon O; Ding N; Ben-Shachar M; Nir Y; Zion Golumbic E
    J Neurosci; 2017 Aug; 37(32):7772-7781. PubMed ID: 28626013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow EEG rhythms and inter-hemispheric synchronization across sleep and wakefulness in the human hippocampus.
    Moroni F; Nobili L; De Carli F; Massimini M; Francione S; Marzano C; Proserpio P; Cipolli C; De Gennaro L; Ferrara M
    Neuroimage; 2012 Mar; 60(1):497-504. PubMed ID: 22178807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Signatures of the Processing of Temporal Patterns in Sound.
    Herrmann B; Johnsrude IS
    J Neurosci; 2018 Jun; 38(24):5466-5477. PubMed ID: 29773757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral-temporal EEG dynamics of speech discrimination processing in infants during sleep.
    Gilley PM; Uhler K; Watson K; Yoshinaga-Itano C
    BMC Neurosci; 2017 Mar; 18(1):34. PubMed ID: 28330464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heartbeat-related EEG amplitude and phase modulations from wakefulness to deep sleep: Interactions with sleep spindles and slow oscillations.
    Lechinger J; Heib DP; Gruber W; Schabus M; Klimesch W
    Psychophysiology; 2015 Nov; 52(11):1441-50. PubMed ID: 26268858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disrupted neural tracking of sound localization during non-rapid eye movement sleep.
    Wang Y; Lu L; Zou G; Zheng L; Qin L; Zou Q; Gao JH
    Neuroimage; 2022 Oct; 260():119490. PubMed ID: 35853543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of hierarchical predictive coding during sleep.
    Strauss M; Sitt JD; King JR; Elbaz M; Azizi L; Buiatti M; Naccache L; van Wassenhove V; Dehaene S
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):E1353-62. PubMed ID: 25737555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-density EEG characterization of brain responses to auditory rhythmic stimuli during wakefulness and NREM sleep.
    Lustenberger C; Patel YA; Alagapan S; Page JM; Price B; Boyle MR; Fröhlich F
    Neuroimage; 2018 Apr; 169():57-68. PubMed ID: 29217404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The representation of audiovisual regularities in the human brain.
    Besle J; Hussain Z; Giard MH; Bertrand O
    J Cogn Neurosci; 2013 Mar; 25(3):365-73. PubMed ID: 23190327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracing the neural basis of auditory entrainment.
    Lehmann A; Arias DJ; Schönwiesner M
    Neuroscience; 2016 Nov; 337():306-314. PubMed ID: 27667358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-dependent changes in cortical gain control as measured by auditory evoked responses to varying intensity stimuli.
    Phillips DJ; Schei JL; Meighan PC; Rector DM
    Sleep; 2011 Nov; 34(11):1527-37. PubMed ID: 22043124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo approach to the cellular mechanisms for sensory processing in sleep and wakefulness.
    Velluti RA; Pedemonte M
    Cell Mol Neurobiol; 2002 Dec; 22(5-6):501-16. PubMed ID: 12585677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting violations of temporal regularities in waking and sleeping two-month-old infants.
    Otte RA; Winkler I; Braeken MA; Stekelenburg JJ; van der Stelt O; Van den Bergh BR
    Biol Psychol; 2013 Feb; 92(2):315-22. PubMed ID: 23046905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Wakefulness and Brain Arousal Regulation in Psychiatric Research.
    Sander C; Hensch T; Wittekind DA; Böttger D; Hegerl U
    Neuropsychobiology; 2015; 72(3-4):195-205. PubMed ID: 26901462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain reactivity differentiates subjects with high and low dream recall frequencies during both sleep and wakefulness.
    Eichenlaub JB; Bertrand O; Morlet D; Ruby P
    Cereb Cortex; 2014 May; 24(5):1206-15. PubMed ID: 23283685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of sleep onset on the auditory averaged evoked response.
    Ornitz EM; Ritvo ER; Carr EM; La Franchi S; Walter RD
    Electroencephalogr Clin Neurophysiol; 1967 Oct; 23(4):335-41. PubMed ID: 4167765
    [No Abstract]   [Full Text] [Related]  

  • 19. Correlation between spontaneous activity and auditory evoked responses in the human EEG.
    Häkkinen V; Fruhstorfer H
    Acta Neurol Scand; 1967; 43(S31):160-1. PubMed ID: 5583249
    [No Abstract]   [Full Text] [Related]  

  • 20. Sound-induced perturbations of the brain network in non-REM sleep, and network oscillations in wake.
    Wu W; Sheth BR
    Psychophysiology; 2013 Mar; 50(3):274-86. PubMed ID: 23316945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.