These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3839616)

  • 1. Biochemical oxygen activation as the basis for the physiological action of tetrachlorodecaoxide (TCDO).
    Youngman RJ; Wagner GR; Kühne FW; Elstner EF
    Z Naturforsch C Biosci; 1985; 40(5-6):409-14. PubMed ID: 3839616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time kinetics of hemoglobin and myoglobin activation by tetrachlorodecaoxide (TCDO).
    Youngman RJ; Wagner GR; Kühne FW; Elstner EF
    Free Radic Res Commun; 1986; 1(5):311-9. PubMed ID: 3505230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas chromatographic differentiation between myeloperoxidase activity and Fenton-type oxidants.
    von Kruedener S; Schempp H; Elstner EF
    Free Radic Biol Med; 1995 Aug; 19(2):141-6. PubMed ID: 7649486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OH-radical-type reactive oxygen species derived from superoxide and nitric oxide: a sensitive method for their determination and differentiation.
    Hippeli S; Rohnert U; Koske D; Elstner EF
    Z Naturforsch C J Biosci; 1997; 52(9-10):564-70. PubMed ID: 9462930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Heme activated oxidations using the chlorite-oxygen complex "TCDO" (Oxoferin)--an overview].
    Elstner EF
    Z Naturforsch C J Biosci; 1988; 43(11-12):893-902. PubMed ID: 3245879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1-Aminocyclopropane-1-carboxylic acid as a substrate of peroxidase: conditions for oxygen consumption, hydroperoxide generation and ethylene production.
    Acosta M; Casas JL; Arnao MB; Sabater F
    Biochim Biophys Acta; 1991 Apr; 1077(3):273-80. PubMed ID: 2029526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide.
    Feierman DE; Winston GW; Cederbaum AI
    Alcohol Clin Exp Res; 1985; 9(2):95-102. PubMed ID: 2988364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1990 Dec; 283(2):326-33. PubMed ID: 2275546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2- and H2O2.
    Adak S; Bandyopadhyay U; Bandyopadhyay D; Banerjee RK
    Biochemistry; 1998 Dec; 37(48):16922-33. PubMed ID: 9836585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro investigations on the antibacterial action and the influence on the phagocytic chemiluminescence of tetrachlorodecaoxide--a new, non-metallic oxygen complex.
    Ullmann U; Kühne FW
    Infection; 1984; 12(3):225-9. PubMed ID: 6547925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free radicals play little role in the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in carnation membrane fraction.
    Adam Z; Borochov A; Mayak S
    Free Radic Res Commun; 1986; 2(3):137-42. PubMed ID: 3145243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of H2O2 production in porcine thyroid cells: evidence for intermediary formation of superoxide anion by NADPH-dependent H2O2-generating machinery.
    Nakamura Y; Makino R; Tanaka T; Ishimura Y; Ohtaki S
    Biochemistry; 1991 May; 30(20):4880-6. PubMed ID: 1645182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and biochemical aspects of superoxide radicals and related species of activated oxygen.
    Singh A
    Can J Physiol Pharmacol; 1982 Nov; 60(11):1330-45. PubMed ID: 6295572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pro- and antioxidative properties of cortical tissue preparations from human brain exhibiting NMDA-receptor characteristics.
    Elstner M; Denke A; Gsell W; Elstner EF; Riederer P; Gerlach M
    Z Naturforsch C J Biosci; 1999; 54(5-6):438-45. PubMed ID: 10431395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide dismutase inhibition of alkaline hemin-mediated O2 activation.
    Adams C; Adams PA
    J Inorg Biochem; 1989 Sep; 37(1):29-34. PubMed ID: 2795000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Singlet oxygen as a mediator in the hematoporphyrin-catalyzed photooxidation of NADPH to NADP+ in deuterium oxide.
    Bodaness RS; Chan PC
    J Biol Chem; 1977 Dec; 252(23):8554-60. PubMed ID: 21874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of superoxide dismutase and catalase on catalysis of 6-hydroxydopamine and 6-aminodopamine autoxidation by iron and ascorbate.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1981 Aug; 30(16):2279-85. PubMed ID: 6794574
    [No Abstract]   [Full Text] [Related]  

  • 18. ESR evidence for the generation of reactive oxygen species from the copper-mediated oxidation of the benzene metabolite, hydroquinone: role in DNA damage.
    Li Y; Kuppusamy P; Zweier JL; Trush MA
    Chem Biol Interact; 1995 Feb; 94(2):101-20. PubMed ID: 7828218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetrachlorodecaoxygen, a wound healing agent, produces vascular relaxation through hemoglobulin-dependent inactivation of serotonin and norepinephrine.
    Wolin MS; Kleber E; Mohazzab KM; Elstner EF
    J Cardiovasc Pharmacol; 1994 Apr; 23(4):664-8. PubMed ID: 7516020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascorbic acid and glucose oxidation by ultraviolet A-generated oxygen free radicals.
    Giangiacomo A; Olesen PR; Ortwerth BJ
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1549-56. PubMed ID: 8675397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.