These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 38396229)

  • 1. Unlocking the Potential of High Entropy Alloys in Electrochemical Water Splitting: A Review.
    Ahmad A; Nairan A; Feng Z; Zheng R; Bai Y; Khan U; Gao J
    Small; 2024 Feb; ():e2311929. PubMed ID: 38396229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of High Entropy Alloys Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction.
    Huo X; Yu H; Xing B; Zuo X; Zhang N
    Chem Rec; 2022 Dec; 22(12):e202200175. PubMed ID: 36108141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-entropy alloys in electrocatalysis: from fundamentals to applications.
    Ren JT; Chen L; Wang HY; Yuan ZY
    Chem Soc Rev; 2023 Nov; 52(23):8319-8373. PubMed ID: 37920962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization strategies of high-entropy alloys for electrocatalytic applications.
    Xiao L; Wang Z; Guan J
    Chem Sci; 2023 Nov; 14(45):12850-12868. PubMed ID: 38023509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Entropy Alloys for Electrocatalysis: Design, Characterization, and Applications.
    Zhang Y; Wang D; Wang S
    Small; 2022 Feb; 18(7):e2104339. PubMed ID: 34741405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain engineering of high-entropy alloy catalysts for electrocatalytic water splitting.
    Wang B; Liu W; Leng Y; Yu X; Wang C; Hu L; Zhu X; Wu C; Yao Y; Zou Z
    iScience; 2023 Apr; 26(4):106326. PubMed ID: 36950114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-entropy alloy electrocatalysts go to (sub-)nanoscale.
    Li M; Lin F; Zhang S; Zhao R; Tao L; Li L; Li J; Zeng L; Luo M; Guo S
    Sci Adv; 2024 Jun; 10(23):eadn2877. PubMed ID: 38838156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailored Electronic Structure of Ir in High Entropy Alloy for Highly Active and Durable Bifunctional Electrocatalyst for Water Splitting under an Acidic Environment.
    Kwon J; Sun S; Choi S; Lee K; Jo S; Park K; Kim YK; Park HB; Park HY; Jang JH; Han H; Paik U; Song T
    Adv Mater; 2023 Jun; 35(26):e2300091. PubMed ID: 36967600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony.
    Anantharaj S; Noda S
    Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-Tailored Medium Entropy Alloys as Radically Low Overpotential Oxygen Evolution Electrocatalysts.
    Park H; Bae JW; Lee TH; Park IJ; Kim C; Lee MG; Lee SA; Yang JW; Choi MJ; Hong SH; Kim SY; Ahn SH; Kim JY; Kim HS; Jang HW
    Small; 2022 Mar; 18(11):e2105611. PubMed ID: 35064754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Future prospects of high-entropy alloys as next-generation industrial electrode materials.
    Bolar S; Ito Y; Fujita T
    Chem Sci; 2024 Jun; 15(23):8664-8722. PubMed ID: 38873068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulating Electron Delocalization of Lanthanide Elements through High-Entropy Confinement to Promote Electrocatalytic Water Splitting.
    Jiang Y; Liang Z; Liu JC; Fu H; Yan CH; Du Y
    ACS Nano; 2024 Jul; ():. PubMed ID: 38981052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis.
    Cai ZX; Goou H; Ito Y; Tokunaga T; Miyauchi M; Abe H; Fujita T
    Chem Sci; 2021 Sep; 12(34):11306-11315. PubMed ID: 34667541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Doping Effects On Electrocatalytic Water Splitting of Non-Noble High-Entropy Alloy Nanoparticles Prepared by Inert Gas Condensation.
    Zhou X; Zou L; Zhu H; Yan M; Wang J; Lan S; Chen S; Hahn H; Feng T
    Small; 2024 May; 20(21):e2310327. PubMed ID: 38098433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoporous Al-Ni-Co-Ir-Mo High-Entropy Alloy for Record-High Water Splitting Activity in Acidic Environments.
    Jin Z; Lv J; Jia H; Liu W; Li H; Chen Z; Lin X; Xie G; Liu X; Sun S; Qiu HJ
    Small; 2019 Nov; 15(47):e1904180. PubMed ID: 31596058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries.
    Zhang Q; Lian K; Liu Q; Qi G; Zhang S; Luo J; Liu X
    J Colloid Interface Sci; 2023 Sep; 646():844-854. PubMed ID: 37235930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wood-Structured Nanomaterials as Highly Efficient, Self-Standing Electrocatalysts for Water Splitting.
    Huang J; Shi Z; Mao C; Yang G; Chen Y
    Small; 2024 Jun; ():e2402511. PubMed ID: 38837861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen production from water electrolysis: role of catalysts.
    Wang S; Lu A; Zhong CJ
    Nano Converg; 2021 Feb; 8(1):4. PubMed ID: 33575919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-level insight into efficient synergistic oxygen evolution catalysis at multimetallic sites in PtNiFeCoCu high-entropy alloys.
    Ming S; Meng K; Hou C; Qin L; Wang S; Rong J; Yu X; Hou H
    Phys Chem Chem Phys; 2023 Dec; 25(48):32979-32988. PubMed ID: 38031515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.