BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 38396603)

  • 1. Exploration of Toxins from a Marine Annelid: An Analysis of Phyllotoxins and Accompanying Bioactives.
    Rodrigo AP; Moutinho Cabral I; Alexandre A; Costa PM
    Animals (Basel); 2024 Feb; 14(4):. PubMed ID: 38396603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Exploration of Novel Bioactives from the Venomous Marine Annelid
    Campos S; Rodrigo AP; Moutinho Cabral I; Mendes VM; Manadas B; D'Ambrosio M; Costa PM
    Toxins (Basel); 2023 Nov; 15(11):. PubMed ID: 37999518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Transcriptomic Approach to the Recruitment of Venom Proteins in a Marine Annelid.
    Rodrigo AP; Grosso AR; Baptista PV; Fernandes AR; Costa PM
    Toxins (Basel); 2021 Jan; 13(2):. PubMed ID: 33525375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific Antiproliferative Properties of Proteinaceous Toxin Secretions from the Marine Annelid
    Rodrigo AP; Mendes VM; Manadas B; Grosso AR; Alves de Matos AP; Baptista PV; Costa PM; Fernandes AR
    Mar Drugs; 2021 Jan; 19(1):. PubMed ID: 33445445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A drug discovery approach based on comparative transcriptomics between two toxin-secreting marine annelids:
    Moutinho Cabral I; Madeira C; Grosso AR; Costa PM
    Mol Omics; 2022 Sep; 18(8):731-744. PubMed ID: 35792046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic and proteomic analyses reveal the first occurrence of diverse toxin groups in Millepora alcicornis.
    Hérnández-Elizárraga VH; Vega-Tamayo JE; Olguín-López N; Ibarra-Alvarado C; Rojas-Molina A
    J Proteomics; 2023 Sep; 288():104984. PubMed ID: 37536522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined Transcriptomic and Proteomic Analysis of the Posterior Salivary Gland from the Southern Blue-Ringed Octopus and the Southern Sand Octopus.
    Whitelaw BL; Strugnell JM; Faou P; da Fonseca RR; Hall NE; Norman M; Finn J; Cooke IR
    J Proteome Res; 2016 Sep; 15(9):3284-97. PubMed ID: 27427999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explorations on the ecological role of toxin secretion and delivery in jawless predatory Polychaeta.
    Cuevas N; Martins M; Rodrigo AP; Martins C; Costa PM
    Sci Rep; 2018 May; 8(1):7635. PubMed ID: 29769587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization and Bioreactivity of Cysteine-Rich Secretions in the Marine Gastropod
    D'Ambrosio M; Gonçalves C; Calmão M; Rodrigues M; Costa PM
    Mar Drugs; 2021 May; 19(5):. PubMed ID: 34063509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Polychaete's powerful punch: venom gland transcriptomics of Glycera reveals a complex cocktail of toxin homologs.
    von Reumont BM; Campbell LI; Richter S; Hering L; Sykes D; Hetmank J; Jenner RA; Bleidorn C
    Genome Biol Evol; 2014 Sep; 6(9):2406-23. PubMed ID: 25193302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A RNA-seq approach to identify putative toxins from acrorhagi in aggressive and non-aggressive Anthopleura elegantissima polyps.
    Macrander J; Brugler MR; Daly M
    BMC Genomics; 2015 Mar; 16(1):221. PubMed ID: 25886045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotechnological significance of toxic marine dinoflagellates.
    Camacho FG; Rodríguez JG; Mirón AS; García MC; Belarbi EH; Chisti Y; Grima EM
    Biotechnol Adv; 2007; 25(2):176-94. PubMed ID: 17208406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome sequencing of wolf spider Lycosa sp. (Araneae: Lycosidae) venom glands provides insights into the evolution and diversity of disulfide-rich toxins.
    You Y; Yin W; Tembrock LR; Wu Z; Gu X; Yang Z; Zhang C; Zhao Y; Yang Z
    Comp Biochem Physiol Part D Genomics Proteomics; 2023 Dec; 48():101145. PubMed ID: 37748227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteo-Transcriptomic Analysis Identifies Potential Novel Toxins Secreted by the Predatory, Prey-Piercing Ribbon Worm
    von Reumont BM; Lüddecke T; Timm T; Lochnit G; Vilcinskas A; von Döhren J; Nilsson MA
    Mar Drugs; 2020 Aug; 18(8):. PubMed ID: 32752210
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Montuori E; De Luca D; Penna A; Stalberga D; Lauritano C
    Mar Drugs; 2023 Dec; 22(1):. PubMed ID: 38248656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marine microbial bioprospecting: Exploitation of marine biodiversity towards biotechnological applications-a review.
    Hosseini H; Al-Jabri HM; Moheimani NR; Siddiqui SA; Saadaoui I
    J Basic Microbiol; 2022 Sep; 62(9):1030-1043. PubMed ID: 35467037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hidden biotechnological potential of marine invertebrates: The Polychaeta case study.
    Rodrigo AP; Costa PM
    Environ Res; 2019 Jun; 173():270-280. PubMed ID: 30928858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences.
    Fry BG; Wüster W
    Mol Biol Evol; 2004 May; 21(5):870-83. PubMed ID: 15014162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus.
    Madio B; Undheim EAB; King GF
    J Proteomics; 2017 Aug; 166():83-92. PubMed ID: 28739511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensity fading MALDI-TOF mass spectrometry and functional proteomics assignments to identify protease inhibitors in marine invertebrates.
    Covaleda G; Trejo SA; Salas-Sarduy E; Del Rivero MA; Chavez MA; Aviles FX
    J Proteomics; 2017 Aug; 165():75-92. PubMed ID: 28602552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.