BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38396843)

  • 21. CRL4B E3 ligase recruited by PRPF19 inhibits SARS-CoV-2 infection by targeting ORF6 for ubiquitin-dependent degradation.
    Zhang L; Hao P; Chen X; Lv S; Gao W; Li C; Li Z; Zhang W
    mBio; 2024 Feb; 15(2):e0307123. PubMed ID: 38265236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interferon antagonism by SARS-CoV-2: a functional study using reverse genetics.
    Schroeder S; Pott F; Niemeyer D; Veith T; Richter A; Muth D; Goffinet C; Müller MA; Drosten C
    Lancet Microbe; 2021 May; 2(5):e210-e218. PubMed ID: 33969329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative comparison of nuclear transport inhibition by SARS coronavirus ORF6 reveals the importance of oligomerization.
    Yoo TY; Mitchison TJ
    Proc Natl Acad Sci U S A; 2024 Jan; 121(4):e2307997121. PubMed ID: 38236733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phage display technique identifies the interaction of severe acute respiratory syndrome coronavirus open reading frame 6 protein with nuclear pore complex interacting protein NPIPB3 in modulating Type I interferon antagonism.
    Huang SH; Lee TY; Lin YJ; Wan L; Lai CH; Lin CW
    J Microbiol Immunol Infect; 2017 Jun; 50(3):277-285. PubMed ID: 26320399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SARS-CoV-2 infection triggers widespread host mRNA decay leading to an mRNA export block.
    Burke JM; St Clair LA; Perera R; Parker R
    RNA; 2021 Nov; 27(11):1318-1329. PubMed ID: 34315815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of SARS-CoV-2 proteins reveals Orf6 pathogenicity, subcellular localization, host interactions and attenuation by Selinexor.
    Lee JG; Huang W; Lee H; van de Leemput J; Kane MA; Han Z
    Cell Biosci; 2021 Mar; 11(1):58. PubMed ID: 33766124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2.
    Busnadiego I; Fernbach S; Pohl MO; Karakus U; Huber M; Trkola A; Stertz S; Hale BG
    mBio; 2020 Sep; 11(5):. PubMed ID: 32913009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SARS-CoV-2 omicron sub-lineages differentially modulate interferon response in human lung epithelial cells.
    Gori Savellini G; Anichini G; Cusi MG
    Virus Res; 2023 Jul; 332():199134. PubMed ID: 37192725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation and evasion of type I interferon responses by SARS-CoV-2.
    Lei X; Dong X; Ma R; Wang W; Xiao X; Tian Z; Wang C; Wang Y; Li L; Ren L; Guo F; Zhao Z; Zhou Z; Xiang Z; Wang J
    Nat Commun; 2020 Jul; 11(1):3810. PubMed ID: 32733001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Upping the ante: enhanced expression of interferon-antagonizing ORF6 and ORF9b proteins by SARS-CoV-2 variants of concern.
    Caobi A; Saeed M
    Curr Opin Microbiol; 2024 Jun; 79():102454. PubMed ID: 38518551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptomic analysis reveals novel mechanisms of SARS-CoV-2 infection in human lung cells.
    Yang S; Wu S; Yu Z; Huang J; Zhong X; Liu X; Zhu H; Xiao L; Deng Q; Sun W
    Immun Inflamm Dis; 2020 Dec; 8(4):753-762. PubMed ID: 33124193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses.
    Banerjee AK; Blanco MR; Bruce EA; Honson DD; Chen LM; Chow A; Bhat P; Ollikainen N; Quinodoz SA; Loney C; Thai J; Miller ZD; Lin AE; Schmidt MM; Stewart DG; Goldfarb D; De Lorenzo G; Rihn SJ; Voorhees RM; Botten JW; Majumdar D; Guttman M
    Cell; 2020 Nov; 183(5):1325-1339.e21. PubMed ID: 33080218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evasion of Type I Interferon by SARS-CoV-2.
    Xia H; Cao Z; Xie X; Zhang X; Chen JY; Wang H; Menachery VD; Rajsbaum R; Shi PY
    Cell Rep; 2020 Oct; 33(1):108234. PubMed ID: 32979938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SARS-CoV-2 Proteins: Are They Useful as Targets for COVID-19 Drugs and Vaccines?
    Mohammed MEA
    Curr Mol Med; 2022; 22(1):50-66. PubMed ID: 33622224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roles and functions of SARS-CoV-2 proteins in host immune evasion.
    Rashid F; Xie Z; Suleman M; Shah A; Khan S; Luo S
    Front Immunol; 2022; 13():940756. PubMed ID: 36003396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. VSV disrupts the Rae1/mrnp41 mRNA nuclear export pathway.
    Faria PA; Chakraborty P; Levay A; Barber GN; Ezelle HJ; Enninga J; Arana C; van Deursen J; Fontoura BM
    Mol Cell; 2005 Jan; 17(1):93-102. PubMed ID: 15629720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of SARS-CoV-2 accessory proteins in immune evasion.
    Zandi M; Shafaati M; Kalantar-Neyestanaki D; Pourghadamyari H; Fani M; Soltani S; Kaleji H; Abbasi S
    Biomed Pharmacother; 2022 Dec; 156():113889. PubMed ID: 36265309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The proximal proteome of 17 SARS-CoV-2 proteins links to disrupted antiviral signaling and host translation.
    Meyers JM; Ramanathan M; Shanderson RL; Beck A; Donohue L; Ferguson I; Guo MG; Rao DS; Miao W; Reynolds D; Yang X; Zhao Y; Yang YY; Blish C; Wang Y; Khavari PA
    PLoS Pathog; 2021 Oct; 17(10):e1009412. PubMed ID: 34597346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns.
    Redondo N; Zaldívar-López S; Garrido JJ; Montoya M
    Front Immunol; 2021; 12():708264. PubMed ID: 34305949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoscopic Elucidation of Spontaneous Self-Assembly of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Open Reading Frame 6 (ORF6) Protein.
    Nishide G; Lim K; Tamura M; Kobayashi A; Zhao Q; Hazawa M; Ando T; Nishida N; Wong RW
    J Phys Chem Lett; 2023 Sep; 14(38):8385-8396. PubMed ID: 37707320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.