BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38397162)

  • 1. A Genome-Wide Association Study Reveals the Genetic Mechanisms of Nutrient Accumulation in Spinach.
    Ji N; Liu Z; She H; Xu Z; Zhang H; Fang Z; Qian W
    Genes (Basel); 2024 Jan; 15(2):. PubMed ID: 38397162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic diversity and association mapping of mineral element concentrations in spinach leaves.
    Qin J; Shi A; Mou B; Grusak MA; Weng Y; Ravelombola W; Bhattarai G; Dong L; Yang W
    BMC Genomics; 2017 Dec; 18(1):941. PubMed ID: 29202697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression Analysis of Oxalate Metabolic Pathway Genes Reveals Oxalate Regulation Patterns in Spinach.
    Cai X; Ge C; Xu C; Wang X; Wang S; Wang Q
    Molecules; 2018 May; 23(6):. PubMed ID: 29861493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ammonium reduces oxalate accumulation in different spinach (Spinacia oleracea L.) genotypes by inhibiting root uptake of nitrate.
    Liu X; Lu L; Chen Q; Ding W; Dai P; Hu Y; Yu Y; Jin C; Lin X
    Food Chem; 2015 Nov; 186():312-8. PubMed ID: 25976827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits.
    Cai X; Sun X; Xu C; Sun H; Wang X; Ge C; Zhang Z; Wang Q; Fei Z; Jiao C; Wang Q
    Nat Commun; 2021 Dec; 12(1):7246. PubMed ID: 34903739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions.
    Xu C; Jiao C; Sun H; Cai X; Wang X; Ge C; Zheng Y; Liu W; Sun X; Xu Y; Deng J; Zhang Z; Huang S; Dai S; Mou B; Wang Q; Fei Z; Wang Q
    Nat Commun; 2017 May; 8():15275. PubMed ID: 28537264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing.
    Shi A; Qin J; Mou B; Correll J; Weng Y; Brenner D; Feng C; Motes D; Yang W; Dong L; Bhattarai G; Ravelombola W
    PLoS One; 2017; 12(11):e0188745. PubMed ID: 29190770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Mineral Nutrient Efficiency in Genetically Diverse Spinach Accessions by Biochemical and Functional Marker Strategies.
    Rashid M; Yousaf Z; Din A; Munawar M; Aftab A; Riaz N; Younas A; Alaraidh IA; Okla MK; AbdElgawad H
    Front Plant Sci; 2022; 13():889604. PubMed ID: 35707614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing Growth-Associated Molecular Markers Via High-Throughput Phenotyping in Spinach.
    Awika HO; Bedre R; Yeom J; Marconi TG; Enciso J; Mandadi KK; Jung J; Avila CA
    Plant Genome; 2019 Nov; 12(3):1-19. PubMed ID: 33016585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Oxalate Metabolism in Spinach Revealed by RNA-Seq-Based Transcriptomic Analysis.
    Joshi V; Penalosa A; Joshi M; Rodriguez S
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide simple sequence repeats (SSR) markers discovered from whole-genome sequence comparisons of multiple spinach accessions.
    Bhattarai G; Shi A; Kandel DR; Solís-Gracia N; da Silva JA; Avila CA
    Sci Rep; 2021 May; 11(1):9999. PubMed ID: 33976335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic diversity and association analysis of leafminer (Liriomyza langei) resistance in spinach (Spinacia oleracea).
    Shi A; Mou B
    Genome; 2016 Aug; 59(8):581-8. PubMed ID: 27490441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High and low oxalate content in spinach: an investigation of accumulation patterns.
    Mirahmadi SF; Hassandokht M; Fatahi R; Naghavi MR; Rezaei K
    J Sci Food Agric; 2022 Jan; 102(2):836-843. PubMed ID: 34233027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Bioaccessibility of Carotenoids and Chlorophylls in a Diverse Collection of Spinach Accessions and Commercial Cultivars.
    Hayes M; Pottorff M; Kay C; Van Deynze A; Osorio-Marin J; Lila MA; Iorrizo M; Ferruzzi MG
    J Agric Food Chem; 2020 Mar; 68(11):3495-3505. PubMed ID: 32125838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spinach YY genome reveals sex chromosome evolution, domestication, and introgression history of the species.
    Ma X; Yu L; Fatima M; Wadlington WH; Hulse-Kemp AM; Zhang X; Zhang S; Xu X; Wang J; Huang H; Lin J; Deng B; Liao Z; Yang Z; Ma Y; Tang H; Van Deynze A; Ming R
    Genome Biol; 2022 Mar; 23(1):75. PubMed ID: 35255946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Newly developed SSR markers reveal genetic diversity and geographical clustering in spinach (Spinacia oleracea).
    Göl Ş; Göktay M; Allmer J; Doğanlar S; Frary A
    Mol Genet Genomics; 2017 Aug; 292(4):847-855. PubMed ID: 28386640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first report of iron-rich population of adapted medicinal spinach (Blitum virgatum L.) compared with cultivated spinach (Spinacia oleracea L.).
    Ammarellou A; Mozaffarian V
    Sci Rep; 2021 Nov; 11(1):22169. PubMed ID: 34772968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of copper treatment on mineral nutrient absorption and cell ultrastructure of spinach seedlings.
    Gong Q; Wang L; Dai TW; Kang Q; Zhou JY; Li ZH
    Ying Yong Sheng Tai Xue Bao; 2019 Mar; 30(3):941-950. PubMed ID: 30912387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic dissection of nitrogen induced changes in the shoot and root biomass of spinach.
    Joshi V; Shi A; Mishra AK; Gill H; DiPiazza J
    Sci Rep; 2022 Aug; 12(1):13751. PubMed ID: 35962022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Interplay of Sulfur and Selenium Enabling Variations in Micronutrient Accumulation in Red Spinach.
    Saeed K; Nisa FK; Abdalla MA; Mühling KH
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.