BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38397565)

  • 1. Rapid Acidification and Off-Flavor Reduction of Pea Protein by Fermentation with Lactic Acid Bacteria and Yeasts.
    Zipori D; Hollmann J; Rigling M; Zhang Y; Weiss A; Schmidt H
    Foods; 2024 Feb; 13(4):. PubMed ID: 38397565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory Improvement of a Pea Protein-Based Product Using Microbial Co-Cultures of Lactic Acid Bacteria and Yeasts.
    El Youssef C; Bonnarme P; Fraud S; Péron AC; Helinck S; Landaud S
    Foods; 2020 Mar; 9(3):. PubMed ID: 32192189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of co-fermentation system with isolated new yeasts on soymilk: microbiological, physicochemical, rheological, aromatic, and sensory characterizations.
    Korma SA; Li L; Ghamry M; Zhou Q; An P; Abdrabo KAE; Manzoor MF; Rehman A; Niazi S; Cacciotti I
    Braz J Microbiol; 2022 Sep; 53(3):1549-1564. PubMed ID: 35661334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effect of the coculture of Leuconostoc pseudomesenteroides and Lactococcus lactis, isolated from honeybees, on the generation of plant-based dairy alternatives based on soy, pea, oat, and potato drinks.
    Sedó Molina GE; Shetty R; Jacobsen C; Duedahl-Olesen L; Hansen EB; Bang-Berthelsen CH
    Food Microbiol; 2024 Apr; 118():104427. PubMed ID: 38049267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The growth and interaction of yeasts and lactic acid bacteria isolated from Zimbabwean naturally fermented milk in UHT milk.
    Gadaga TH; Mutukumira AN; Narvhus JA
    Int J Food Microbiol; 2001 Aug; 68(1-2):21-32. PubMed ID: 11545217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.
    Larsen N; Werner BB; Vogensen FK; Jespersen L
    J Dairy Sci; 2015 Mar; 98(3):1640-51. PubMed ID: 25597975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of microbial consortia for the fermentation of pea-protein-enriched emulsions.
    Ben-Harb S; Saint-Eve A; Panouillé M; Souchon I; Bonnarme P; Dugat-Bony E; Irlinger F
    Int J Food Microbiol; 2019 Mar; 293():124-136. PubMed ID: 30690292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Flavor-Forming Starter
    Lee HW; Kim IS; Kil BJ; Seo E; Park H; Ham JS; Choi YJ; Huh CS
    J Microbiol Biotechnol; 2020 Sep; 30(9):1404-1411. PubMed ID: 32522956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of organic flavor compounds by dominant lactic acid bacteria and yeasts from
    Mukisa IM; Byaruhanga YB; Muyanja CMBK; Langsrud T; Narvhus JA
    Food Sci Nutr; 2017 May; 5(3):702-712. PubMed ID: 28572960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volatile compounds analysis and biodegradation strategy of beany flavor in pea protein.
    Xiang L; Zhu W; Jiang B; Chen J; Zhou L; Zhong F
    Food Chem; 2023 Feb; 402():134275. PubMed ID: 36179520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volatile Flavor Compounds Profile and Fermentation Characteristics of Milk Fermented by
    Dan T; Ren W; Liu Y; Tian J; Chen H; Li T; Liu W
    Front Microbiol; 2019; 10():2183. PubMed ID: 31620117
    [No Abstract]   [Full Text] [Related]  

  • 12. Enhanced production of nisin by co-culture of Lactococcus lactis sub sp. lactis and Yarrowia lipolytica in molasses based medium.
    Ariana M; Hamedi J
    J Biotechnol; 2017 Aug; 256():21-26. PubMed ID: 28694185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of different isolation sources of
    Yu X; Sun Y; Shen X; Li W; Cai H; Guo S; Sun Z
    Food Chem X; 2024 Mar; 21():101224. PubMed ID: 38384690
    [No Abstract]   [Full Text] [Related]  

  • 14. Unravelling the contribution of lactic acid bacteria and acetic acid bacteria to cocoa fermentation using inoculated organisms.
    Ho VTT; Fleet GH; Zhao J
    Int J Food Microbiol; 2018 Aug; 279():43-56. PubMed ID: 29727857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lyophilized preparations of bacteriocinogenic Lactobacillus curvatus and Lactococcus lactis subsp. lactis as potential protective adjuncts to control Listeria monocytogenes in dry-fermented sausages.
    Benkerroum N; Daoudi A; Hamraoui T; Ghalfi H; Thiry C; Duroy M; Evrart P; Roblain D; Thonart P
    J Appl Microbiol; 2005; 98(1):56-63. PubMed ID: 15610417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening and application of lactic acid bacteria and yeasts with l-lactic acid-producing and antioxidant capacity in traditional fermented rice acid.
    Liu N; Miao S; Qin L
    Food Sci Nutr; 2020 Nov; 8(11):6095-6111. PubMed ID: 33282261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection and use of indigenous mixed starter cultures for mustard leaves fermentation and the improvement of cuocai characteristics.
    Chen X; Zheng M; Liu J; Deng Z; Zhang B; Li H
    J Sci Food Agric; 2018 Mar; 98(5):1773-1786. PubMed ID: 28862331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shortening Fermentation Period and Quality Improvement of Fermented Fish,
    Bao R; Liu S; Ji C; Liang H; Yang S; Yan X; Zhou Y; Lin X; Zhu B
    Front Microbiol; 2018; 9():3003. PubMed ID: 30662432
    [No Abstract]   [Full Text] [Related]  

  • 19. Isolation, characterisation and identification of lactic acid bacteria from bushera: a Ugandan traditional fermented beverage.
    Muyanja CM; Narvhus JA; Treimo J; Langsrud T
    Int J Food Microbiol; 2003 Feb; 80(3):201-10. PubMed ID: 12494920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo application and dynamics of lactic acid bacteria for the four-season production of Vastedda-like cheese.
    Gaglio R; Scatassa ML; Cruciata M; Miraglia V; Corona O; Di Gerlando R; Portolano B; Moschetti G; Settanni L
    Int J Food Microbiol; 2014 May; 177():37-48. PubMed ID: 24598514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.