BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38397825)

  • 1. Variations in Proline Content, Polyamine Profiles, and Antioxidant Capacities among Different Provenances of European Beech (
    Kebert M; Stojnić S; Rašeta M; Kostić S; Vuksanović V; Ivanković M; Lanšćak M; Markić AG
    Antioxidants (Basel); 2024 Feb; 13(2):. PubMed ID: 38397825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wood structural differences between northern and southern beech provenances growing at a moderate site.
    Eilmann B; Sterck F; Wegner L; de Vries SM; von Arx G; Mohren GM; den Ouden J; Sass-Klaassen U
    Tree Physiol; 2014 Aug; 34(8):882-93. PubMed ID: 25163729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential.
    Petrik P; Petek-Petrik A; Kurjak D; Mukarram M; Klein T; Gömöry D; Střelcová K; Frýdl J; Konôpková A
    Plant Biol (Stuttg); 2022 Dec; 24(7):1287-1296. PubMed ID: 35238138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the effect of adaptation to future climate change on spring phenological trend of European beech (Fagus sylvatica L.).
    Wang H; Lin S; Dai J; Ge Q
    Sci Total Environ; 2022 Nov; 846():157540. PubMed ID: 35878847
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Basu P; Maier C
    Pharmacognosy Res; 2016; 8(4):258-264. PubMed ID: 27695265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient.
    Knutzen F; Meier IC; Leuschner C
    Tree Physiol; 2015 Sep; 35(9):949-63. PubMed ID: 26209617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yacon (Smallanthus sonchifolius Poepp. & Endl.) as a Novel Source of Health Promoting Compounds: Antioxidant Activity, Phytochemicals and Sugar Content in Flesh, Peel, and Whole Tubers of Seven Cultivars.
    Khajehei F; Merkt N; Claupein W; Graeff-Hoenninger S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29382176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and tartary buckwheat produced in China upon thermal processing.
    Liu Y; Cai C; Yao Y; Xu B
    J Sci Food Agric; 2019 Sep; 99(12):5565-5576. PubMed ID: 31152448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant potential of two varieties of
    Ruslan K; Happyniar S; Fidrianny I
    J Taibah Univ Med Sci; 2018 Jun; 13(3):211-218. PubMed ID: 31435326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of acid and base catalyzed hydrolysis on the yield of phenolics and antioxidant activity of extracts from germinated brown rice (GBR).
    Sani IM; Iqbal S; Chan KW; Ismail M
    Molecules; 2012 Jun; 17(6):7584-94. PubMed ID: 22713349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of In Vitro Gastrointestinal Digestion on the Antioxidants, Antioxidant Activity, and Hypolipidemic Activity of Green Jujube Vinegar.
    Li G; Yan N; Li G
    Foods; 2022 Jun; 11(11):. PubMed ID: 35681396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenolic compounds and antioxidant capacities of 10 common edible flowers from China.
    Xiong L; Yang J; Jiang Y; Lu B; Hu Y; Zhou F; Mao S; Shen C
    J Food Sci; 2014 Apr; 79(4):C517-25. PubMed ID: 24621197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytochemical content, especially spermidine derivatives, presenting antioxidant and antilipoxygenase activities in Thai bee pollens.
    Khongkarat P; Phuwapraisirisan P; Chanchao C
    PeerJ; 2022; 10():e13506. PubMed ID: 35637714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus.
    Noreen H; Semmar N; Farman M; McCullagh JSO
    Asian Pac J Trop Med; 2017 Aug; 10(8):792-801. PubMed ID: 28942828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction efficiency, phytochemical profiles and antioxidative properties of different parts of Saptarangi (
    Ghadage DM; Kshirsagar PR; Pai SR; Chavan JJ
    Biochem Biophys Rep; 2017 Dec; 12():79-90. PubMed ID: 28955795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Study on Phytochemical Profiles and Antioxidant Capacities of Chestnuts Produced in Different Geographic Area in China.
    Xu Z; Meenu M; Chen P; Xu B
    Antioxidants (Basel); 2020 Feb; 9(3):. PubMed ID: 32106518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UHPLC-HRMS Analysis of
    Formato M; Piccolella S; Zidorn C; Pacifico S
    Antioxidants (Basel); 2021 Jul; 10(7):. PubMed ID: 34356373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binary solvent extraction system and extraction time effects on phenolic antioxidants from kenaf seeds (Hibiscus cannabinus L.) extracted by a pulsed ultrasonic-assisted extraction.
    Wong YH; Lau HW; Tan CP; Long K; Nyam KL
    ScientificWorldJournal; 2014; 2014():789346. PubMed ID: 24592184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures.
    Wan C; Yu Y; Zhou S; Liu W; Tian S; Cao S
    Pharmacogn Mag; 2011 Jan; 7(25):40-5. PubMed ID: 21472078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Drying Techniques on Phytochemical Contents and Biological Activities on Selected Bamboo Leaves.
    Benjamin MAZ; Ng SY; Saikim FH; Rusdi NA
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.