These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 38397830)

  • 21. Protein lipoxidation: Detection strategies and challenges.
    Aldini G; Domingues MR; Spickett CM; Domingues P; Altomare A; Sánchez-Gómez FJ; Oeste CL; Pérez-Sala D
    Redox Biol; 2015 Aug; 5():253-266. PubMed ID: 26072467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in Structural Changes and Pathophysiological Effects of Low-Density Lipoprotein Particles upon Accumulation of Acylhydroperoxy Derivatives in Their Outer Phospholipid Monolayer or upon Modification of Apoprotein B-100 by Natural Dicarbonyls.
    Lankin VZ; Tikhaze AK; Konovalova GG
    Biochemistry (Mosc); 2023 Nov; 88(11):1910-1919. PubMed ID: 38105208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Role of Lipoxidation in the Pathogenesis of Diabetic Retinopathy.
    Augustine J; Troendle EP; Barabas P; McAleese CA; Friedel T; Stitt AW; Curtis TM
    Front Endocrinol (Lausanne); 2020; 11():621938. PubMed ID: 33679605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycoxidation and lipoxidation in atherogenesis.
    Baynes JW; Thorpe SR
    Free Radic Biol Med; 2000 Jun; 28(12):1708-16. PubMed ID: 10946212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipoproteins as targets and markers of lipoxidation.
    Afonso CB; Spickett CM
    Redox Biol; 2019 May; 23():101066. PubMed ID: 30579928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postprandial lipoproteins and the molecular regulation of vascular homeostasis.
    Botham KM; Wheeler-Jones CP
    Prog Lipid Res; 2013 Oct; 52(4):446-64. PubMed ID: 23774609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases.
    Gianazza E; Brioschi M; Martinez Fernandez A; Casalnuovo F; Altomare A; Aldini G; Banfi C
    Antioxid Redox Signal; 2021 Jan; 34(1):49-98. PubMed ID: 32640910
    [No Abstract]   [Full Text] [Related]  

  • 28. Short-chain lipid peroxidation products form covalent adducts with pyruvate kinase and inhibit its activity in vitro and in breast cancer cells.
    Sousa BC; Ahmed T; Dann WL; Ashman J; Guy A; Durand T; Pitt AR; Spickett CM
    Free Radic Biol Med; 2019 Nov; 144():223-233. PubMed ID: 31173844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipoxidation and cancer immunity.
    Martín-Sierra C; Laranjeira P; Domingues MR; Paiva A
    Redox Biol; 2019 May; 23():101103. PubMed ID: 30658904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein adducts generated from products of lipid oxidation: focus on HNE and one.
    Sayre LM; Lin D; Yuan Q; Zhu X; Tang X
    Drug Metab Rev; 2006; 38(4):651-75. PubMed ID: 17145694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions.
    Catalá A
    Chem Phys Lipids; 2009 Jan; 157(1):1-11. PubMed ID: 18977338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lipid Peroxide-Derived Reactive Carbonyl Species as Mediators of Oxidative Stress and Signaling.
    Biswas MS; Mano J
    Front Plant Sci; 2021; 12():720867. PubMed ID: 34777410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation of protein carbonyls by glycoxidation and lipoxidation reactions with autoxidation products of ascorbic acid and polyunsaturated fatty acids.
    Miyata T; Inagi R; Asahi K; Yamada Y; Horie K; Sakai H; Uchida K; Kurokawa K
    FEBS Lett; 1998 Oct; 437(1-2):24-8. PubMed ID: 9804165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of oxidatively modified proteins in salt-stressed Arabidopsis: a carbonyl-targeted proteomics approach.
    Mano J; Nagata M; Okamura S; Shiraya T; Mitsui T
    Plant Cell Physiol; 2014 Jul; 55(7):1233-44. PubMed ID: 24850833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidized phospholipid-protein adducts: The future targets of interest.
    Ferreira HB; Domingues MR
    Arch Biochem Biophys; 2024 Apr; 754():109956. PubMed ID: 38458481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cross-oxidation of angiotensin II by glycerophosphatidylcholine oxidation products.
    Silva AM; Borralho AC; Pinho SA; Domingues MR; Domingues P
    Rapid Commun Mass Spectrom; 2011 May; 25(10):1413-21. PubMed ID: 21504007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A method to produce fully characterized ubiquitin covalently modified by 4-hydroxy-nonenal, glyoxal, methylglyoxal, and malondialdehyde.
    Colzani M; Criscuolo A; Casali G; Carini M; Aldini G
    Free Radic Res; 2016; 50(3):328-36. PubMed ID: 26554438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of oxidative modifications in atherosclerosis.
    Stocker R; Keaney JF
    Physiol Rev; 2004 Oct; 84(4):1381-478. PubMed ID: 15383655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reactive Carbonyl Species: A Missing Link in ROS Signaling.
    Mano J; Biswas MS; Sugimoto K
    Plants (Basel); 2019 Sep; 8(10):. PubMed ID: 31575078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An update on lipid oxidation and inflammation in cardiovascular diseases.
    Zhong S; Li L; Shen X; Li Q; Xu W; Wang X; Tao Y; Yin H
    Free Radic Biol Med; 2019 Nov; 144():266-278. PubMed ID: 30946962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.