These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 38398920)

  • 61. Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells.
    Liao JF; Wu WQ; Jiang Y; Zhong JX; Wang L; Kuang DB
    Chem Soc Rev; 2020 Jan; 49(2):354-381. PubMed ID: 31859320
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Key Roles of Interfaces in Inverted Metal-Halide Perovskite Solar Cells.
    Li Y; Wang Y; Xu Z; Peng B; Li X
    ACS Nano; 2024 Apr; 18(16):10688-10725. PubMed ID: 38600721
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Material and Device Design of Flexible Perovskite Solar Cells for Next-Generation Power Supplies.
    Tian R; Zhou S; Meng Y; Liu C; Ge Z
    Adv Mater; 2024 Jan; ():e2311473. PubMed ID: 38224961
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Navigating challenges and solutions for metal-halide and carbon-based electrodes in perovskite solar cells (NCS-MCEPSC): An environmental approach.
    Znidi F; Morsy M; Uddin MN
    Heliyon; 2024 Jun; 10(12):e32843. PubMed ID: 38988552
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Understanding of perovskite crystal growth and film formation in scalable deposition processes.
    Liu C; Cheng YB; Ge Z
    Chem Soc Rev; 2020 Mar; 49(6):1653-1687. PubMed ID: 32134426
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Printing High-Efficiency Perovskite Solar Cells in High-Humidity Ambient Environment-An In Situ Guided Investigation.
    Fong PW; Hu H; Ren Z; Liu K; Cui L; Bi T; Liang Q; Wu Z; Hao J; Li G
    Adv Sci (Weinh); 2021 Mar; 8(6):2003359. PubMed ID: 33747734
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Low-Temperature Atomic Layer Deposition of Metal Oxide Layers for Perovskite Solar Cells with High Efficiency and Stability under Harsh Environmental Conditions.
    Lv Y; Xu P; Ren G; Chen F; Nan H; Liu R; Wang D; Tan X; Liu X; Zhang H; Chen ZK
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23928-23937. PubMed ID: 29952555
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Potassium Iodide-Modified Lead-Free Cs
    Hamukwaya SL; Hao H; Mashingaidze MM; Zhong T; Tang S; Dong J; Xing J; Liu H
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364527
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Positive Effects of Guanidinium Salt Post-Treatment on Multi-Cation Mixed Halide Perovskite Solar Cells.
    Aidarkhanov D; Idu IH; Zhou X; Duan D; Wang F; Hu H; Ng A
    Nanomaterials (Basel); 2024 Jul; 14(13):. PubMed ID: 38998766
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High-Quality Ruddlesden-Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells.
    Liu P; Han N; Wang W; Ran R; Zhou W; Shao Z
    Adv Mater; 2021 Mar; 33(10):e2002582. PubMed ID: 33511702
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tin Oxide Electron-Selective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells.
    Altinkaya C; Aydin E; Ugur E; Isikgor FH; Subbiah AS; De Bastiani M; Liu J; Babayigit A; Allen TG; Laquai F; Yildiz A; De Wolf S
    Adv Mater; 2021 Apr; 33(15):e2005504. PubMed ID: 33660306
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Promoting the Efficiency and Stability of CsPbIBr
    Liu P; Yang X; Chen Y; Xiang H; Wang W; Ran R; Zhou W; Shao Z
    ACS Appl Mater Interfaces; 2020 May; 12(21):23984-23994. PubMed ID: 32352277
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Exfoliated Fluorographene Quantum Dots as Outstanding Passivants for Improved Flexible Perovskite Solar Cells.
    Yang L; Li Y; Wang L; Pei Y; Wang Z; Zhang Y; Lin H; Li X
    ACS Appl Mater Interfaces; 2020 May; 12(20):22992-23001. PubMed ID: 32343556
    [TBL] [Abstract][Full Text] [Related]  

  • 74. When Aggregation-Induced Emission Meets Perovskites: Efficient Defect-Passivation and Charge-Transfer for Ambient Fabrication of Perovskite Solar Cells.
    Gu N; Zhang P; Song L; Du P; Ning L; Buregeya Ingabire P; Chen WH; Wang Y; Xiong J
    Chemistry; 2022 Aug; 28(43):e202200850. PubMed ID: 35587563
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Stabilizing Organic-Inorganic Lead Halide Perovskite Solar Cells With Efficiency Beyond 20.
    Lin C
    Front Chem; 2020; 8():592. PubMed ID: 32850630
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Application of quantum dots in perovskite solar cells.
    Zheng F; Liu Y; Ren W; Sunli Z; Xie X; Cui Y; Hao Y
    Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 33647887
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications.
    Yang D; Yang R; Priya S; Liu SF
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4466-4483. PubMed ID: 30332522
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Achieving High Fill Factor in Efficient P-i-N Perovskite Solar Cells.
    Shi J; Zhao C; Yuan J
    Small; 2023 Nov; 19(47):e2302383. PubMed ID: 37501318
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Solvent-free preparation and thermocompression self-assembly: an exploration of performance improvement strategies for perovskite solar cells.
    Luo F; Lim D; Seok HJ; Kim HK
    RSC Adv; 2024 May; 14(24):17261-17294. PubMed ID: 38808244
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Progress and Challenges Toward Effective Flexible Perovskite Solar Cells.
    Li X; Yu H; Liu Z; Huang J; Ma X; Liu Y; Sun Q; Dai L; Ahmad S; Shen Y; Wang M
    Nanomicro Lett; 2023 Aug; 15(1):206. PubMed ID: 37651002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.