These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38398921)

  • 1. Enhanced Performance of an Acoustofluidic Device by Integrating Temperature Control.
    Hashemiesfahan M; Gelin P; Maisto A; Gardeniers H; De Malsche W
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Acoustic Streaming Flow Patterns Induced by Solid, Liquid and Gas Obstructions.
    Lu HF; Tien WH
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 32993101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing methods for the modelling of boundary-driven streaming in acoustofluidic devices.
    Lei J; Glynne-Jones P; Hill M
    Microfluid Nanofluidics; 2017; 21(2):23. PubMed ID: 32226356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixing high-viscosity fluids via acoustically driven bubbles.
    Orbay S; Ozcelik A; Lata J; Kaynak M; Wu M; Huang TJ
    J Micromech Microeng; 2017; 27(1):. PubMed ID: 31588165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves.
    Hsu JC; Chang CY
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative assessment of parallel acoustofluidic device.
    Dezfuli MR; Shahidian A; Ghassemi M
    J Acoust Soc Am; 2021 Jul; 150(1):233. PubMed ID: 34340481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation.
    Zhou Y
    Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of 2D Acoustofluidic Fields in an Ultrasonic Cavity Generated by Multiple Vibration Sources.
    Tang Q; Zhou S; Huang L; Chen Z
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.
    Hahn P; Leibacher I; Baasch T; Dual J
    Lab Chip; 2015 Nov; 15(22):4302-13. PubMed ID: 26448531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary-based, multifunctional manipulation of particles and fluids
    Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ
    J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustofluidic manipulation for submicron to nanoparticles.
    Wei W; Wang Z; Wang B; He X; Wang Y; Bai Y; Yang Q; Pang W; Duan X
    Electrophoresis; 2024 May; ():. PubMed ID: 38794970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Numerical Investigation of the Mixing Performance in a Y-Junction Microchannel Induced by Acoustic Streaming.
    Endaylalu SA; Tien WH
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.
    Collins DJ; Khoo BL; Ma Z; Winkler A; Weser R; Schmidt H; Han J; Ai Y
    Lab Chip; 2017 May; 17(10):1769-1777. PubMed ID: 28394386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustofluidic particle trapping, manipulation, and release using dynamic-mode cantilever sensors.
    Johnson BN; Mutharasan R
    Analyst; 2016 Dec; 142(1):123-131. PubMed ID: 27878146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enriching Nanoparticles via Acoustofluidics.
    Mao Z; Li P; Wu M; Bachman H; Mesyngier N; Guo X; Liu S; Costanzo F; Huang TJ
    ACS Nano; 2017 Jan; 11(1):603-612. PubMed ID: 28068078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing Acoustic Behavior of Silicon Microchannels Separated by a Porous Wall.
    Hashemiesfahan M; Christiaens JW; Maisto A; Gelin P; Gardeniers H; De Malsche W
    Micromachines (Basel); 2024 Jun; 15(7):. PubMed ID: 39064377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Submicron Particle Concentration and Patterning with Ultralow Frequency Acoustic Vibration.
    Zhou Y; Ma Z; Ai Y
    Anal Chem; 2020 Oct; 92(19):12795-12800. PubMed ID: 32894949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfabricated acoustofluidic membrane acoustic waveguide actuator for highly localized in-droplet dynamic particle manipulation.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Lab Chip; 2023 Mar; 23(7):1865-1878. PubMed ID: 36852544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.