These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38398924)

  • 1. Lithium Niobate MEMS Antisymmetric Lamb Wave Resonators with Support Structures.
    Zhang Y; Jiang Y; Tang C; Deng C; Du F; He J; Hu Q; Wang Q; Yu H; Wang Z
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge treatment for spurious mode suppression in thin-film lithium niobate resonators.
    Aryal A; Tiwari S; Branch DW; Siddiqui A; Busani T
    Sci Rep; 2024 Sep; 14(1):21070. PubMed ID: 39256420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral Spurious Mode Suppression in Lithium Niobate A1 Resonators.
    Yang Y; Gao L; Lu R; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1930-1937. PubMed ID: 33395393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Through-Holes Design for Ideal LiNbO
    Wu SM; Hao CB; Qin ZH; Wang Y; Chen HY; Yu SY; Chen YF
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near Spurious-Free Thickness Shear Mode Lithium Niobate Resonator for Piezoelectric Power Conversion.
    Nguyen K; Chulukhadze V; Stolt E; Braun W; Segovia-Fernandez J; Chakraborty S; Rivas J; Lu R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Nov; 70(11):1536-1543. PubMed ID: 37549088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Analysis of Lithium-Niobate-Based Laterally Excited Bulk Acoustic Wave Resonator with Pentagon Spiral Electrodes.
    Xie Y; Liu W; Cai Y; Wen Z; Luo T; Liu Y; Sun C
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 6 GHz lamb wave acoustic filters based on A1-mode lithium niobate thin film resonators with checker-shaped electrodes.
    Tong X; Zou Y; Wen Z; Liu Z; Luo T; Zhou J; Liu H; Ren Y; Xu Q; Liu W; Liu Y; Cai Y; Sun C
    Microsyst Nanoeng; 2024 Sep; 10(1):130. PubMed ID: 39300103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spurious-Free Shear Horizontal Wave Resonators Based on 36Y-Cut LiNbO
    Liu Y; Liu K; Li J; Li Y; Wu T
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partially Etched Piezoelectric Film Filled with SiO
    Yu Z; Guo Y; Fu S; Li B; Liu P; Zhang S; Sun Z
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-frequency Lamb wave device composed of MEMS structure using LiNbO3 thin film and air gap.
    Kadota M; Ogami T; Yamamoto K; Tochishita H; Negoro Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2564-71. PubMed ID: 21041143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of a Solid-State Tuning Behavior in Lithium Niobate.
    Branch DW; Jensen DS; Nordquist CD; Siddiqui A; Douglas JK; Eichenfield M; Friedmann TA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):365-373. PubMed ID: 31567077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Frequency and Spectrum-Clean Shear-Horizontal Acoustic Wave Resonators with AlN Overlay.
    Wu Z; Wu S; Bao F; Zou J
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Electromechanical Coupling Coefficient of a Laterally Excited Bulk Wave Resonator with Composite Piezoelectric Film.
    Xie Y; Liu Y; Liu J; Wang L; Liu W; Soon BW; Cai Y; Sun C
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncontact excitation of multi-GHz lithium niobate electromechanical resonators.
    Wang D; Xie J; Guo Y; Shen M; Tang HX
    Microsyst Nanoeng; 2024 Sep; 10(1):124. PubMed ID: 39237536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spurious Modes in Laterally Excited Bulk Acoustic Resonators (XBARs): Analysis and Suppression.
    Naumenko NF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Jun; 70(6):569-576. PubMed ID: 37028317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solidly Mounted Longitudinally Excited Shear Wave Resonator (YBAR) Based on Lithium Niobate Thin-Film.
    Qin ZH; Wu SM; Wang Y; Liu KF; Wu T; Yu SY; Chen YF
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anchor Loss Reduction of Lamb Wave Resonator by Pillar-Based Phononic Crystal.
    Tong Y; Han T
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33430263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on Quasi-Lamb Wave Modes in AlN-on-Si MEMS Resonators.
    Tu C; Qiao L; Li L; Chen Y; Zhang X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Oct; 70(10):1252-1260. PubMed ID: 37028377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-High-Frequency Bulk Acoustic Resonators Based on Aluminum Scandium Nitride for Wideband Applications.
    Dou W; Zhou C; Qin R; Yang Y; Guo H; Mu Z; Yu W
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Frequency Resonator Using A
    Assila N; Kadota M; Tanaka S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1529-1535. PubMed ID: 31217103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.