These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Flow Control in Porous Media: From Numerical Analysis to Quantitative μPAD for Ionic Strength Measurements. Mehrdel P; Khosravi H; Karimi S; Martínez JAL; Casals-Terré J Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064828 [TBL] [Abstract][Full Text] [Related]
5. Rapid and alternative fabrication method for microfluidic paper based analytical devices. Malekghasemi S; Kahveci E; Duman M Talanta; 2016 Oct; 159():401-411. PubMed ID: 27474324 [TBL] [Abstract][Full Text] [Related]
6. Features in Microfluidic Paper-Based Devices Made by Laser Cutting: How Small Can They Be? Mahmud MA; Blondeel EJM; Kaddoura M; MacDonald BD Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424153 [TBL] [Abstract][Full Text] [Related]
7. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices. Lim H; Jafry AT; Lee J Molecules; 2019 Aug; 24(16):. PubMed ID: 31394856 [TBL] [Abstract][Full Text] [Related]
8. Porous Cellulose Substrate Study to Improve the Performance of Diffusion-Based Ionic Strength Sensors. Khosravi H; Mehrdel P; Martínez JAL; Casals-Terré J Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363629 [TBL] [Abstract][Full Text] [Related]
9. Modeling-Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery. Rath D; Toley BJ ACS Sens; 2021 Jan; 6(1):91-99. PubMed ID: 33382580 [TBL] [Abstract][Full Text] [Related]
10. Advances in Microfluidic Paper-Based Analytical Devices (µPADs): Design, Fabrication, and Applications. Chen JL; Njoku DI; Tang C; Gao Y; Chen J; Peng YK; Sun H; Mao G; Pan M; Tam NF Small Methods; 2024 Nov; 8(11):e2400155. PubMed ID: 38781604 [TBL] [Abstract][Full Text] [Related]
11. Recent developments in flow modeling and fluid control for paper-based microfluidic biosensors. Modha S; Castro C; Tsutsui H Biosens Bioelectron; 2021 Apr; 178():113026. PubMed ID: 33545552 [TBL] [Abstract][Full Text] [Related]
12. Effects of Relative Humidity and Paper Geometry on the Imbibition Dynamics and Reactions in Lateral Flow Assays. Das D; Singh T; Ahmed I; Masetty M; Priye A Langmuir; 2022 Aug; 38(32):9863-9873. PubMed ID: 35913402 [TBL] [Abstract][Full Text] [Related]
13. Saturation Equation: An Analytical Expression for Partial Saturation during Wicking Flow in Paper Microfluidic Channels. Verma S; Toley BJ Langmuir; 2024 Jun; 40(22):11419-11427. PubMed ID: 38770942 [TBL] [Abstract][Full Text] [Related]
14. Spontaneous Imbibition in Paper-Based Microfluidic Devices: Experiments and Numerical Simulations. Wang Y; Ye D; Zhu X; Yang Y; Qin C; Chen R; Liao Q Langmuir; 2022 Mar; 38(8):2677-2685. PubMed ID: 35168321 [TBL] [Abstract][Full Text] [Related]
15. Automatic flow delay through passive wax valves for paper-based analytical devices. Meng H; Chen C; Zhu Y; Li Z; Ye F; Ho JWK; Chen H Lab Chip; 2021 Oct; 21(21):4166-4176. PubMed ID: 34541589 [TBL] [Abstract][Full Text] [Related]
16. Influence of Geometry and Surrounding Conditions on Fluid Flow in Paper-Based Devices. Walji N; MacDonald BD Micromachines (Basel); 2016 Apr; 7(5):. PubMed ID: 30404248 [TBL] [Abstract][Full Text] [Related]
18. A simple method for the assessment of electrophoretic mobility in porous media. Franck N; Vera Candioti L; Gerlero GS; Urteaga R; Kler PA Electrophoresis; 2024 Apr; 45(7-8):589-598. PubMed ID: 37853649 [TBL] [Abstract][Full Text] [Related]
19. Precise electroosmotic flow measurements on paper substrates. Franck N; Schaumburg F; Kler PA; Urteaga R Electrophoresis; 2021 Apr; 42(7-8):975-982. PubMed ID: 33433920 [TBL] [Abstract][Full Text] [Related]
20. Paper based analytical devices for blood grouping: a comprehensive review. Ebrahimi Fana S; Paknejad M; Aminian M Biomed Microdevices; 2021 Jul; 23(3):34. PubMed ID: 34213635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]