These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38398941)

  • 21. Investigating the migration of immiscible contaminant fluid flow in homogeneous and heterogeneous aquifers with high-precision numerical simulations.
    Feo A; Celico F
    PLoS One; 2022; 17(4):e0266486. PubMed ID: 35468165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imbibition of Newtonian Fluids in Paper-like Materials with the Infinitesimal Control Volume Method.
    Song K; Huang R; Hu X
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental Measurement of Parameters Governing Flow Rates and Partial Saturation in Paper-Based Microfluidic Devices.
    Rath D; Sathishkumar N; Toley BJ
    Langmuir; 2018 Jul; 34(30):8758-8766. PubMed ID: 29969273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical evaluation and experimental validation of fluid flow behavior within an organ-on-a-chip model.
    Carvalho V; Gonçalves IM; Rodrigues N; Sousa P; Pinto V; Minas G; Kaji H; Shin SR; Rodrigues RO; Teixeira SFCF; Lima RA
    Comput Methods Programs Biomed; 2024 Jan; 243():107883. PubMed ID: 37944399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Applications of microfluidic paper-based chips in environmental analysis and detection].
    Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L
    Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Developments in Microfluidic Paper-based Analytical Devices for Pharmaceutical Analysis.
    Khamcharoen W; Kaewjua K; Yomthiangthae P; Anekrattanasap A; Chailapakul O; Siangproh W
    Curr Top Med Chem; 2022; 22(27):2241-2260. PubMed ID: 36305123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Paper-Based Laser-Pyrolyzed Electrofluidics: An Electrochemical Platform for Capillary-Driven Diagnostic Bioassays.
    Bezinge L; Lesinski JM; Suea-Ngam A; Richards DA; deMello AJ; Shih CJ
    Adv Mater; 2023 Jul; 35(30):e2302893. PubMed ID: 37261647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of the effects of porous media structure on mixing-controlled reactions using pore-scale modeling and micromodel experiments.
    Willingham TW; Werth CJ; Valocchi AJ
    Environ Sci Technol; 2008 May; 42(9):3185-93. PubMed ID: 18522092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic paper-based analytical devices (µPADs) for fast and ultrasensitive sensing of biomarkers and monitoring of diseases.
    Abdollahi-Aghdam A; Majidi MR; Omidi Y
    Bioimpacts; 2018; 8(4):237-240. PubMed ID: 30397578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progress in the development and integration of fluid flow control tools in paper microfluidics.
    Fu E; Downs C
    Lab Chip; 2017 Feb; 17(4):614-628. PubMed ID: 28119982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Liquid Wicking in a Paper Strip: An Experimental and Numerical Study.
    Patari S; Mahapatra PS
    ACS Omega; 2020 Sep; 5(36):22931-22939. PubMed ID: 32954142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maximizing flow rate in single paper layer, rapid flow microfluidic paper-based analytical devices.
    Macleod Briongos I; Call ZD; Henry CS; Bark DL
    Microfluid Nanofluidics; 2023; 27(10):70. PubMed ID: 37719231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains.
    Yiotis A; Karadimitriou NK; Zarikos I; Steeb H
    Sci Rep; 2021 Feb; 11(1):3891. PubMed ID: 33594146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-resolution shock-capturing numerical simulations of three-phase immiscible fluids from the unsaturated to the saturated zone.
    Feo A; Celico F
    Sci Rep; 2021 Mar; 11(1):5212. PubMed ID: 33664276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow field analysis of cigarette filter through micro-CT-based geometries and CFD simulation.
    Song Y; Liu Z; Sun Z; Du W; Wang Z; Hu Z; Ma M; Wang Z
    Heliyon; 2024 Apr; 10(8):e29253. PubMed ID: 38644843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Paper-based passive pumps to generate controllable whole blood flow through microfluidic devices.
    Sotoudegan MS; Mohd O; Ligler FS; Walker GM
    Lab Chip; 2019 Nov; 19(22):3787-3795. PubMed ID: 31612163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels.
    Garud KS; Jeong S; Lee MY
    Int J Numer Method Biomed Eng; 2023 Jul; 39(7):e3733. PubMed ID: 37221673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic control of capillary flow in porous media by electroosmotic pumping.
    Rosenfeld T; Bercovici M
    Lab Chip; 2019 Jan; 19(2):328-334. PubMed ID: 30566158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental Study: The Effect of Pore Shape, Geometrical Heterogeneity, and Flow Rate on the Repetitive Two-Phase Fluid Transport in Microfluidic Porous Media.
    Kim S; Zhang J; Ryu S
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.