These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38398972)

  • 1. Effects of Oxidized Metal Powders on Pore Defects in Powder-Fed Direct Energy Deposition.
    Son JY; Lee KY; Lee SH; Choi CH
    Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38398972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Metal Powders Used for Additive Manufacturing.
    Slotwinski JA; Garboczi EJ; Stutzman PE; Ferraris CF; Watson SS; Peltz MA
    J Res Natl Inst Stand Technol; 2014; 119():460-93. PubMed ID: 26601040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and Thermal Properties of the High Thermal Conductivity Steel (HTCS) Additively Manufactured via Powder-Fed Direct Energy Deposition.
    Son JY; Lee KY; Shin GY; Choi CH; Shim DS
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore formation driven by particle impact in laser powder-blown directed energy deposition.
    Webster S; Moser N; Fezzaa K; Sun T; Ehmann K; Garboczi E; Cao J
    PNAS Nexus; 2023 Jun; 2(6):pgad178. PubMed ID: 37325029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-Contamination Quantification in Powders for Additive Manufacturing: A Study on Ti-6Al-4V and Maraging Steel.
    Santecchia E; Mengucci P; Gatto A; Bassoli E; Defanti S; Barucca G
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31344794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 316L Stainless Steel Powders for Additive Manufacturing: Relationships of Powder Rheology, Size, Size Distribution to Part Properties.
    Groarke R; Danilenkoff C; Karam S; McCarthy E; Michel B; Mussatto A; Sloane J; O' Neill A; Raghavendra R; Brabazon D
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occupational exposure during metal additive manufacturing: A case study of laser powder bed fusion of aluminum alloy.
    Azzougagh MN; Keller FX; Cabrol E; Cici M; Pourchez J
    J Occup Environ Hyg; 2021 Jun; 18(6):223-236. PubMed ID: 33989129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Analysis of Two H13-Type Starting Materials Used for Laser Cladding and Aerosol Particles Formed in This Process.
    Péter L; Osán J; Kugler S; Groma V; Pollastri S; Nagy A
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Powder-size driven facile microstructure control in powder-fusion metal additive manufacturing processes.
    Chandra S; Wang C; Tor SB; Ramamurty U; Tan X
    Nat Commun; 2024 Apr; 15(1):3094. PubMed ID: 38605035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Tempering Temperature and Time on Microstructure and Mechanical Properties of Additively Manufactured H13 Tool Steel.
    Bae K; Moon HS; Park Y; Jo I; Lee J
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the effects of laser control in laser powder bed fusion on near-surface pore formation via combined analysis of in-situ melt pool monitoring and X-ray computed tomography.
    Kim FH; Yeung H; Garboczi EJ
    Addit Manuf; 2021 Dec; 48(A):. PubMed ID: 36733468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength.
    Ekren O; Ozkomur A; Ucar Y
    J Prosthet Dent; 2018 Mar; 119(3):481-487. PubMed ID: 28689902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparison of Microstructure and Microhardness Properties of IN718 Fabricated via Powder- and Wire-Fed Laser-Directed Energy Deposition.
    Menon N; Sawyer BA; Jamieson CD; Reutzel EW; Basak A
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of layered manufacturing techniques, alloy powders, and layer thickness on mechanical properties of Co-Cr dental alloys.
    Ucar Y; Ekren O
    J Prosthet Dent; 2018 Nov; 120(5):762-770. PubMed ID: 29961615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser Rescanning for Enhancing Mechanical Properties of Laser-Directed Energy-Deposited High-Manganese Steels.
    Park YK; Nam HJ; Park YH; Lee W
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Metallic Powder Characteristics on Extruded Feedstock Performance for Indirect Additive Manufacturing.
    Santos C; Gatões D; Cerejo F; Vieira MT
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of process parameters on the preparation of pharmaceutical films by electrostatic powder deposition.
    Prasad LK; LaFountaine JS; Keen JM; Williams RO; McGinity JW
    Int J Pharm; 2016 Dec; 515(1-2):94-103. PubMed ID: 27725271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-Aided Directed Energy Deposition of Steel Powder over Flat Surfaces and Edges.
    Caiazzo F; Alfieri V
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29547571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser Powder-Bed Fusion as an Alloy Development Tool: Parameter Selection for In-Situ Alloying Using Elemental Powders.
    Shoji Aota L; Bajaj P; Zschommler Sandim HR; Aimé Jägle E
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.