These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38398996)

  • 1. Geometry-Dependent Elastic Flow Dynamics in Micropillar Arrays.
    Ström OE; Beech JP; Tegenfeldt JO
    Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38398996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short and long-range cyclic patterns in flows of DNA solutions in microfluidic obstacle arrays.
    Ström OE; Beech JP; Tegenfeldt JO
    Lab Chip; 2023 Mar; 23(7):1779-1793. PubMed ID: 36807458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using symmetry to control viscoelastic waves in pillar arrays.
    Beech JP; Ström OE; Turato E; Tegenfeldt JO
    RSC Adv; 2023 Oct; 13(45):31497-31506. PubMed ID: 37901264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore-Scale Flow Characterization of Polymer Solutions in Microfluidic Porous Media.
    Browne CA; Shih A; Datta SS
    Small; 2020 Mar; 16(9):e1903944. PubMed ID: 31602809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and fabrication of magnetically functionalized flexible micropillar arrays for rapid and controllable microfluidic mixing.
    Zhou B; Xu W; Syed AA; Chau Y; Chen L; Chew B; Yassine O; Wu X; Gao Y; Zhang J; Xiao X; Kosel J; Zhang XX; Yao Z; Wen W
    Lab Chip; 2015 May; 15(9):2125-32. PubMed ID: 25849640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From random sphere packings to regular pillar arrays: effect of the macroscopic confinement on hydrodynamic dispersion.
    Daneyko A; Khirevich S; Höltzel A; Seidel-Morgenstern A; Tallarek U
    J Chromatogr A; 2011 Nov; 1218(45):8231-48. PubMed ID: 21982445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micropillar arrays as potential drug screens: Inhibition of micropillar-mediated activation of the FAK-Src-paxillin signaling pathway by the CK2 inhibitor CX-4945.
    Kim J; Choi WJ; Moon SH; Jung J; Park JK; Kim SH; Lee JO
    Acta Biomater; 2015 Nov; 27():13-20. PubMed ID: 26318800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcations in flows of complex fluids around microfluidic cylinders.
    Haward SJ; Hopkins CC; Varchanis S; Shen AQ
    Lab Chip; 2021 Oct; 21(21):4041-4059. PubMed ID: 34647558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscale liquid dynamics and the effect on macroscale propagation in pillar arrays.
    Xiao R; Wang EN
    Langmuir; 2011 Sep; 27(17):10360-4. PubMed ID: 21786799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakup Dynamics of Semi-dilute Polymer Solutions in a Microfluidic Flow-focusing Device.
    Xue CD; Chen XD; Li YJ; Hu GQ; Cao T; Qin KR
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32295232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces.
    Chandra D; Yang S
    Acc Chem Res; 2010 Aug; 43(8):1080-91. PubMed ID: 20552977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry?
    Rahmanian M; Sartipzadeh Hematabad O; Askari E; Shokati F; Bakhshi A; Moghadam S; Olfatbakhsh A; Al Sadat Hashemi E; Khorsand Ahmadi M; Morteza Naghib S; Sinha N; Tel J; Eslami Amirabadi H; den Toonder JMJ; Majidzadeh-A K
    J Adv Res; 2023 May; 47():105-121. PubMed ID: 35964874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic rectifier for polymer solutions flowing through porous media.
    Kawale D; Jayaraman J; Boukany PE
    Biomicrofluidics; 2019 Jan; 13(1):014111. PubMed ID: 30867881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Scale Hydrodynamically Coupled Brownian Dynamics Simulations of Polymer Solutions Flowing through Porous Media.
    Ahuja VR; van der Gucht J; Briels W
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary-driven horseshoe vortex forming around a micro-pillar.
    Ozawa K; Nakamura H; Shimamura K; Dietze GF; Yoshikawa HN; Zoueshtiagh F; Kurose K; Mu L; Ueno I
    J Colloid Interface Sci; 2023 Jul; 642():227-234. PubMed ID: 37004257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the role of initial velocities in pair dispersion in a microfluidic chaotic flow.
    Afik E; Steinberg V
    Nat Commun; 2017 Sep; 8(1):468. PubMed ID: 28883492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of vorticity amplification by elastic waves in a viscoelastic channel flow.
    Li Y; Steinberg V
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2305595120. PubMed ID: 37399407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The permeability of pillar arrays in microfluidic devices: an application of Brinkman's theory towards wall friction.
    Hulikal Chakrapani T; Bazyar H; Lammertink RGH; Luding S; den Otter WK
    Soft Matter; 2023 Jan; 19(3):436-450. PubMed ID: 36511444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flows of healthy and hardened RBC suspensions through a micropillar array.
    Stathoulopoulos A; Passos A; Balabani S
    Med Eng Phys; 2022 Sep; 107():103874. PubMed ID: 36068027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From random sphere packings to regular pillar arrays: analysis of transverse dispersion.
    Daneyko A; Hlushkou D; Khirevich S; Tallarek U
    J Chromatogr A; 2012 Sep; 1257():98-115. PubMed ID: 22921359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.