These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38399111)

  • 1. Effect of Spatter Behavior on Mechanical Properties and Surface Roughness of Printed Parts during PBF-LM of 316L.
    Chen X; Song J; Zhang W; Shang X; Li Y; Chen S; Lin J; Zhou Z
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Spatter in Laser Powder Bed Fusion Additive Manufacturing: In Situ Detection, Generation, Effects, and Countermeasures.
    Li Z; Li H; Yin J; Li Y; Nie Z; Li X; You D; Guan K; Duan W; Cao L; Wang D; Ke L; Liu Y; Zhao P; Wang L; Zhu K; Zhang Z; Gao L; Hao L
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations on the Effect of Layers' Thickness and Orientations in the Machining of Additively Manufactured Stainless Steel 316L.
    Dabwan A; Anwar S; Al-Samhan AM; AlFaify A; Nasr MM
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process of Pure Copper Fabricated by Selective Laser Melting (SLM) Technology under Moderate Laser Power with Re-Melting Strategy.
    Hu R; Su K; Lao Z; Cai Y; Fu B; Yuen MMF; Gao Z; Cao M; Wang Y
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process Optimization and Tailored Mechanical Properties of a Nuclear Zr-4 Alloy Fabricated via Laser Powder Bed Fusion.
    Song C; Zou Z; Yan Z; Liu F; Yang Y; Yan M; Han C
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the Energy Density on Pores, Hardness, Surface Roughness, and Tensile Characteristics of Deposited ASTM 316L Specimens with Powder-Bed Fusion Process.
    Lee HJ
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric Study on In Situ Laser Powder Bed Fusion of Mo(Si
    Minasyan T; Aydinyan S; Toyserkani E; Hussainova I
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process-Structure-Property Relationships of Copper Parts Manufactured by Laser Powder Bed Fusion.
    Abdelhafiz M; Al-Rubaie KS; Emadi A; Elbestawi MA
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparative Investigation of Properties of Metallic Parts Additively Manufactured through MEX and PBF-LB/M Technologies.
    Kluczyński J; Jasik K; Łuszczek J; Sarzyński B; Grzelak K; Dražan T; Joska Z; Szachogłuchowicz I; Płatek P; Małek M
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting.
    Obeidi MA; McCarthy E; O'Connell B; Ul Ahad I; Brabazon D
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30917513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainties Induced by Processing Parameter Variation in Selective Laser Melting of Ti6Al4V Revealed by In-Situ X-ray Imaging.
    Young ZA; Coday MM; Guo Q; Qu M; Hojjatzadeh SMH; Escano LI; Fezzaa K; Sun T; Chen L
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser Polishing of Additive Manufactured Aluminium Parts by Modulated Laser Power.
    Hofele M; Roth A; Schanz J; Neuer J; Harrison DK; De Silva AKM; Riegel H
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beam Diameter Dependence of Performance in Thick-Layer and High-Power Selective Laser Melting of Ti-6Al-4V.
    Shi W; Liu Y; Shi X; Hou Y; Wang P; Song G
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30022002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V.
    Shi X; Ma S; Liu C; Chen C; Wu Q; Chen X; Lu J
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spattering mechanism of laser powder bed fusion additive manufacturing on heterogeneous surfaces.
    Ikeshoji TT; Yonehara M; Kato C; Yanaga Y; Takeshita K; Kyogoku H
    Sci Rep; 2022 Nov; 12(1):20384. PubMed ID: 36437289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Roughness of a 3D-Printed Ni-Cr Alloy Produced by Selective Laser Melting: Effect of Process Parameters.
    Hong MH; Son JS; Kwon TY
    J Nanosci Nanotechnol; 2018 Mar; 18(3):2037-2040. PubMed ID: 29448707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling process instability for defect lean metal additive manufacturing.
    Qu M; Guo Q; Escano LI; Nabaa A; Hojjatzadeh SMH; Young ZA; Chen L
    Nat Commun; 2022 Feb; 13(1):1079. PubMed ID: 35228541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of a large build area on the microstructure and mechanical properties of PBF-LB Ti-6Al-4 V alloy.
    Bagasol AJI; Kaschel FR; Ramachandran S; Mirihanage W; Browne DJ; Dowling DP
    Int J Adv Manuf Technol; 2023; 125(3-4):1355-1369. PubMed ID: 36820386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Spatter and Sublimation in Alloy 718 during Electron Beam Melting.
    Raza A; Hryha E
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on Microstructure and Properties of AlSi10Mg Fabricated by Selective Laser Melting.
    Pan W; Ye Z; Zhang Y; Liu Y; Liang B; Zhai Z
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.