These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38399182)

  • 1. Transformation and Detoxification of Typical Metallurgical Hazardous Waste into a Resource: A Review of the Development of Harmless Treatment and Utilization in China.
    Wang Y; Zhao H; Wang X; Chong J; Huo X; Guo M; Zhang M
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Status of research on the resource utilization of stainless steel pickling sludge in China: a review.
    Shi C; Zhang Y; Zhou S; Jiang J; Huang X; Hua J
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90223-90242. PubMed ID: 37004610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal co-treatment of aluminum dross and municipal solid waste incineration fly ash: Mineral transformation, crusting prevention, detoxification, and low-carbon cementitious material preparation.
    Li J; Jia A; Hou X; Wang X; Mao Y; Wang W
    J Environ Manage; 2023 Mar; 329():117090. PubMed ID: 36584517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hazardous waste characterization among various thermal processes in South Korea: a comparative analysis.
    Shin SK; Kim WI; Jeon TW; Kang YY; Jeong SK; Yeon JM; Somasundaram S
    J Hazard Mater; 2013 Sep; 260():157-66. PubMed ID: 23747474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancements and sustainable strategies for the treatment and management of wastewaters from metallurgical industries: an overview.
    Chalaris M; Gkika DA; Tolkou AK; Kyzas GZ
    Environ Sci Pollut Res Int; 2023 Dec; 30(57):119627-119653. PubMed ID: 37962753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LCA of recycling aluminium incineration bottom ash, dross and shavings in a rotary furnace and environmental benefits of salt-slag valorisation.
    Vallejo Olivares A; Pastor-Vallés E; Pettersen JB; Tranell G
    Waste Manag; 2024 Jun; 182():11-20. PubMed ID: 38626501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research Progress on Controlled Low-Strength Materials: Metallurgical Waste Slag as Cementitious Materials.
    Liu Y; Su Y; Xu G; Chen Y; You G
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of metallurgical slags as catalysts in advanced oxidation processes for removal of refractory organic pollutants in wastewater.
    Li X; Liu H; Zhang Y; Mahlknecht J; Wang C
    J Environ Manage; 2024 Feb; 352():120051. PubMed ID: 38262282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for harmless disposal and resource reutilization of steel wire rope sludges.
    Zhang L; Liu YS
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19797-805. PubMed ID: 27417326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of hazardous waste materials in the coking process.
    Alvarez R; Barriocanal C; Díez MA; Cimadevilla JL; Casal MD; Canga CS
    Environ Sci Technol; 2004 Mar; 38(5):1611-5. PubMed ID: 15046368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on the Preparation Parameters and Basic Properties of Premelted Calcium Aluminate Slag Prepared from Secondary Aluminum Dross.
    Hu S; Wang D; Hou D; Zhao W; Li X; Qu T; Zhu Q
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of Acidithiobacillus bacteria to metallurgical wastes and its potential environmental risks.
    Kratosová G; Schröfel A; Seidlerová J; Kristofová D
    Waste Manag Res; 2012 Mar; 30(3):295-301. PubMed ID: 21946045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilisation of Cr(VI) in stainless steel plant dust through sintering using silica-rich clay.
    Ma G; Garbers-Craig AM
    J Hazard Mater; 2009 Sep; 169(1-3):210-6. PubMed ID: 19406572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of metallurgical iron-containing solid waste-based catalysts as activator of persulfate for organic pollutants degradation.
    Wang Y; Hu X; Chen X; Ren Z; Li Y; Miao J; He Y; Zhang P; Li C; Zhu Q
    Chemosphere; 2024 Jul; 359():142276. PubMed ID: 38761830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive treatments of aluminum dross in China: A critical review.
    Wang C; Li S; Guo Y; He Y; Liu J; Liu H
    J Environ Manage; 2023 Nov; 345():118575. PubMed ID: 37451029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances.
    Sethurajan M; van Hullebusch ED; Nancharaiah YV
    J Environ Manage; 2018 Apr; 211():138-153. PubMed ID: 29408062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative methodology for comprehensive utilization of arsenic-bearing neutralization sludge.
    Zhang T; Han J; Dong L; Liu D; Jiao F; Qin W; Liu W
    J Environ Manage; 2024 Feb; 353():120148. PubMed ID: 38306856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hazardous aluminum dross characterization and recycling strategies: A critical review.
    Mahinroosta M; Allahverdi A
    J Environ Manage; 2018 Oct; 223():452-468. PubMed ID: 29957419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation behavior of heavy metal during Co-thermal treatment of hazardous waste incineration fly ash and slag/electroplating sludge.
    Long Y; Song Y; Huang H; Yang Y; Shen D; Geng H; Ruan J; Gu F
    J Environ Manage; 2024 Feb; 351():119730. PubMed ID: 38086123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.