These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38399813)

  • 21. Microbial copper resistance: importance in biohydrometallurgy.
    Martínez-Bussenius C; Navarro CA; Jerez CA
    Microb Biotechnol; 2017 Mar; 10(2):279-295. PubMed ID: 27790868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of a polyphosphate kinase and its implications for polyphosphate synthesis.
    Zhu Y; Huang W; Lee SS; Xu W
    EMBO Rep; 2005 Jul; 6(7):681-7. PubMed ID: 15947782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal resistance-related genes are differently expressed in response to copper and zinc ion in six Acidithiobacillus ferrooxidans strains.
    Wu X; Zhang Z; Liu L; Deng F; Liu X; Qiu G
    Curr Microbiol; 2014 Dec; 69(6):775-84. PubMed ID: 25023638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and genomic analysis of two novel psychrotolerant
    Muñoz-Villagrán C; Grossolli-Gálvez J; Acevedo-Arbunic J; Valenzuela X; Ferrer A; Díez B; Levicán G
    Front Microbiol; 2022; 13():960324. PubMed ID: 36090071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic engineering of extremely acidophilic Acidithiobacillus species for biomining: Progress and perspectives.
    Chen J; Liu Y; Diep P; Mahadevan R
    J Hazard Mater; 2022 Sep; 438():129456. PubMed ID: 35777147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of Metallosphaera sedula Bioleaching by Targeted Recombination and Adaptive Laboratory Evolution.
    McCarthy S; Ai C; Blum P
    Adv Appl Microbiol; 2018; 104():135-165. PubMed ID: 30143251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The multiple activities of polyphosphate kinase of Escherichia coli and their subunit structure determined by radiation target analysis.
    Tzeng CM; Kornberg A
    J Biol Chem; 2000 Feb; 275(6):3977-83. PubMed ID: 10660553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The structure of the exopolyphosphatase (PPX) from Escherichia coli O157:H7 suggests a binding mode for long polyphosphate chains.
    Rangarajan ES; Nadeau G; Li Y; Wagner J; Hung MN; Schrag JD; Cygler M; Matte A
    J Mol Biol; 2006 Jun; 359(5):1249-60. PubMed ID: 16678853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular characterization of polyphosphate (PolyP) operon from Serratia marcescens.
    Lee SJ; Lee YS; Lee YC; Choi YL
    J Basic Microbiol; 2006; 46(2):108-15. PubMed ID: 16598824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetically altered levels of inorganic polyphosphate in Escherichia coli.
    Crooke E; Akiyama M; Rao NN; Kornberg A
    J Biol Chem; 1994 Mar; 269(9):6290-5. PubMed ID: 8119977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutations in Escherichia coli Polyphosphate Kinase That Lead to Dramatically Increased
    Rudat AK; Pokhrel A; Green TJ; Gray MJ
    J Bacteriol; 2018 Mar; 200(6):. PubMed ID: 29311274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inorganic polyphosphates in extremophiles and their possible functions.
    Orell A; Navarro CA; Rivero M; Aguilar JS; Jerez CA
    Extremophiles; 2012 Jul; 16(4):573-83. PubMed ID: 22585316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome analysis of the thermoacidophilic archaeon Acidianus copahuensis focusing on the metabolisms associated to biomining activities.
    Urbieta MS; Rascovan N; Vázquez MP; Donati E
    BMC Genomics; 2017 Jun; 18(1):445. PubMed ID: 28587624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyphosphate kinase of Lysinibacillus sphaericus and its effects on accumulation of polyphosphate and bacterial growth.
    Shi T; Ge Y; Zhao N; Hu X; Yuan Z
    Microbiol Res; 2015 Mar; 172():41-7. PubMed ID: 25541179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional Genetic Diversity and Plant Growth Promoting Potential of Polyphosphate Accumulating Bacteria in Soil.
    Srivastava S; Anand V; Kaur J; Ranjan M; Bist V; Asif MH; Srivastava S
    Microbiol Spectr; 2022 Feb; 10(1):e0034521. PubMed ID: 35196785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extremely Thermoacidophilic
    Wheaton GH; Vitko NP; Counts JA; Dulkis JA; Podolsky I; Mukherjee A; Kelly RM
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440.
    Nikel PI; Chavarría M; Martínez-García E; Taylor AC; de Lorenzo V
    Microb Cell Fact; 2013 May; 12():50. PubMed ID: 23687963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The exopolyphosphatase gene from sulfolobus solfataricus: characterization of the first gene found to be involved in polyphosphate metabolism in archaea.
    Cardona ST; Chávez FP; Jerez CA
    Appl Environ Microbiol; 2002 Oct; 68(10):4812-9. PubMed ID: 12324325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering polyphosphate metabolism in Escherichia coli: implications for bioremediation of inorganic contaminants.
    Keasling JD; Van Dien SJ; Pramanik J
    Biotechnol Bioeng; 1998 Apr 20-May 5; 58(2-3):231-9. PubMed ID: 10191394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential regulation of polyphosphate genes in Pseudomonas aeruginosa.
    Munévar NF; de Almeida LG; Spira B
    Mol Genet Genomics; 2017 Feb; 292(1):105-116. PubMed ID: 27744562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.