These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38399884)

  • 1. Enhancing the Hydrolytic Stability of Poly(lactic acid) Using Novel Stabilizer Combinations.
    Hallstein J; Metzsch-Zilligen E; Pfaendner R
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Term Thermal Stabilization of Poly(Lactic Acid).
    Hallstein J; Metzsch-Zilligen E; Pfaendner R
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38894026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled and Accelerated Hydrolysis of Polylactide (PLA) through Pentaerythritol Phosphites with Acid Scavengers.
    Polidar M; Metzsch-Zilligen E; Pfaendner R
    Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolytic degradation behaviour of sucrose palmitate reinforced poly(lactic acid) nanocomposites.
    Valapa RB; G P; Katiyar V
    Int J Biol Macromol; 2016 Aug; 89():70-80. PubMed ID: 27095433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The key role of unique crystalline property in the hydrolytic degradation process of microcrystalline cellulose-reinforced stereo-complexed poly(lactic acid) composites.
    Cheng Z; Wang Q; Lei L; Zhao B; Yu T; Fan J; Li Y
    Int J Biol Macromol; 2024 Jul; 275(Pt 1):133656. PubMed ID: 38969048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Hydrolytic Degradation of Substituted Poly(DL-Lactic Acid)s.
    Tsuji H; Eto T; Sakamoto Y
    Materials (Basel); 2011 Aug; 4(8):1384-1398. PubMed ID: 28824149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and Properties of Stereocomplex of Poly(lactic acid) and Its Amphiphilic Copolymers Containing Glucose Groups.
    Qi L; Zhu Q; Cao D; Liu T; Zhu KR; Chang K; Gao Q
    Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32244536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: structure elucidation, separation and quantification of degradation products.
    Ghaffar A; Verschuren PG; Geenevasen JA; Handels T; Berard J; Plum B; Dias AA; Schoenmakers PJ; van der Wal S
    J Chromatogr A; 2011 Jan; 1218(3):449-58. PubMed ID: 21167489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting the Contribution of Additives to the Long-Term Mechanical Stability and Hydrolytic Resistance of Highly Crystalline Polylactide Fibers.
    Schippers C; Gutmann JS; Tsarkova LA
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1984-1995. PubMed ID: 36573577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(lactic acid)/Plasticizer/Nano-Silica Ternary Systems: Properties Evolution and Effects on Degradation Rate.
    Capuano R; Avolio R; Castaldo R; Cocca M; Dal Poggetto G; Gentile G; Errico ME
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of blending tricalcium phosphate on hydrolytic degradation of a block polyester containing poly(L-lactic acid) segment.
    Imai Y; Fukuzawa A; Watanabe M
    J Biomater Sci Polym Ed; 1999; 10(7):773-86. PubMed ID: 10426231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new strategy for recycling and preparation of poly(L-lactic acid): hydrolysis in the melt.
    Tsuji H; Daimon H; Fujie K
    Biomacromolecules; 2003; 4(3):835-40. PubMed ID: 12741806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of lactide monomer on the hydrolytic degradation of poly(lactide-co-glycolide) 85L/15G.
    Paakinaho K; Heino H; Väisänen J; Törmälä P; Kellomäki M
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1283-90. PubMed ID: 21783137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolytic degradation of films prepared from blends of high and low molecular weight poly(DL-lactic acid)s.
    Mauduit J; Pérouse E; Vert M
    J Biomed Mater Res; 1996 Feb; 30(2):201-7. PubMed ID: 9019485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medical-Grade Poly(Lactic Acid)/Hydroxyapatite Composite Films: Thermal and In Vitro Degradation Properties.
    Bauer L; Rogina A; Ivanković M; Ivanković H
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valorization of poly(lactic acid) wastes via mechanical recycling: Improvement of the properties of the recycled polymer.
    Beltrán FR; Barrio I; Lorenzo V; Del Río B; Martínez Urreaga J; de la Orden MU
    Waste Manag Res; 2019 Feb; 37(2):135-141. PubMed ID: 30204060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid)--thermodynamics of micellization and hydrolytic degradation.
    Loh XJ; Tan YX; Li Z; Teo LS; Goh SH; Li J
    Biomaterials; 2008 May; 29(14):2164-72. PubMed ID: 18276002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Slow-Release Fertilizer of Urea Prepared via Melt Blending with Degradable Poly(lactic acid): Formulation and Release Mechanisms.
    Kaavessina M; Distantina S; Shohih EN
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34204892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change in thermal transitions and water uptakes of poly(l-lactic acid) blends upon hydrolytic degradation.
    Oyama HT; Tanishima D; Maekawa S
    Data Brief; 2017 Feb; 10():377-380. PubMed ID: 28018952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA.
    Loo SC; Tan HT; Ooi CP; Boey YC
    Acta Biomater; 2006 May; 2(3):287-96. PubMed ID: 16701888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.