BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38399890)

  • 21. Development and application of FI catalysts for olefin polymerization: unique catalysis and distinctive polymer formation.
    Makio H; Fujita T
    Acc Chem Res; 2009 Oct; 42(10):1532-44. PubMed ID: 19588950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unique Compatibilized Thermoplastic Elastomer with High Strength and Remarkable Ductility: Effect of Multiple Point Interactions within a Rubber-Plastic Blend.
    Panigrahi H; Sreenath PR; Kotnees DK
    ACS Omega; 2020 Jun; 5(22):12789-12808. PubMed ID: 32548463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Propylene polymerization to high molecular weight atactic polypropylene and copolymerization with 1-hexene using monocyclopentadienyl titanium catalysts.
    Wu Q; Su Q; Ye L; Li G; Mu Y
    Dalton Trans; 2010 Mar; 39(10):2525-35. PubMed ID: 20179845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nopadiene: A Pinene-Derived Cyclic Diene as a Styrene Substitute for Fully Biobased Thermoplastic Elastomers.
    Hahn C; Göttker-Schnetmann I; Tzourtzouklis I; Wagner M; Müller AHE; Floudas G; Mecking S; Frey H
    J Am Chem Soc; 2023 Dec; 145(49):26688-26698. PubMed ID: 38048399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of Nanocomposites of Polypropylene with Graphite Nanosheets by
    Marques MFV; Oliveira RJB; Araujo RS
    J Nanosci Nanotechnol; 2018 Jul; 18(7):5133-5142. PubMed ID: 29442705
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Mahmood Q; Sun WH
    R Soc Open Sci; 2018 Jul; 5(7):180367. PubMed ID: 30109091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reinforcement of Styrene Butadiene Rubber Employing Poly(isobornyl methacrylate) (PIBOMA) as High
    Gunaydin A; Mugemana C; Grysan P; Eloy Federico C; Dieden R; Schmidt DF; Westermann S; Weydert M; Shaplov AS
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34067905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polypropylene/Graphene Nanocomposites: Effects of GNP Loading and Compatibilizers on the Mechanical and Thermal Properties.
    Al-Saleh MA; Yussuf AA; Al-Enezi S; Kazemi R; Wahit MU; Al-Shammari T; Al-Banna A
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31783544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of chain microstructures on mechanical behavior and aging of a poly(L-lactide-co-ε-caprolactone) biomedical thermoplastic-elastomer.
    Fernández J; Etxeberria A; Ugartemendia JM; Petisco S; Sarasua JR
    J Mech Behav Biomed Mater; 2012 Aug; 12():29-38. PubMed ID: 22659093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Role of Polypropylene Microfibers in Thermal Properties and Post-Heating Behavior of Cementitious Composites.
    Irshidat MR; Al-Nuaimi N; Rabie M
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on chain shuttling polymerization reaction of nonbridged half-titanocene and bis(phenoxy-imine) Zr binary catalyst system.
    Xu Q; Gao R; Liu D
    R Soc Open Sci; 2019 Apr; 6(4):182007. PubMed ID: 31183130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. E-beam sterilizable thermoplastics elastomers for healthcare devices: Mechanical, morphology, and in vivo studies.
    Balaji AB; Ratnam CT; Khalid M; Walvekar R
    J Biomater Appl; 2018 Mar; 32(8):1049-1062. PubMed ID: 29298552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers.
    Fernández J; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste.
    Yao ZT; Chen T; Li HY; Xia MS; Ye Y; Zheng H
    J Hazard Mater; 2013 Nov; 262():212-7. PubMed ID: 24036146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combination of magnetic and enhanced mechanical properties for copolymer-grafted magnetite composite thermoplastic elastomers.
    Jiang F; Zhang Y; Wang Z; Wang W; Xu Z; Wang Z
    ACS Appl Mater Interfaces; 2015 May; 7(19):10563-75. PubMed ID: 25954980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A plant fiber reinforced polymer composite prepared by a twin-screw extruder.
    Sui G; Fuqua MA; Ulven CA; Zhong WH
    Bioresour Technol; 2009 Feb; 100(3):1246-51. PubMed ID: 18842402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soft, Formstable (Co)Polyester Blend Elastomers.
    Neffe AT; Izraylit V; Hommes-Schattmann PJ; Lendlein A
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34206137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing the Sound and Thermal Insulation Properties of Polypropylene Foam by Preparing High Melt Strength Polypropylene.
    Liu F; Shen C; You F; Zhao W; Deng C; Jiang X
    Macromol Rapid Commun; 2023 Oct; 44(20):e2300344. PubMed ID: 37552045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Styrene-Diene Block Copolymers and Glass Bubbles on the Post-Consumer Recycled Polypropylene Properties.
    Râpă M; Spurcaciu BN; Coman G; Nicolae CA; Gabor RA; Ghioca PN; Berbecaru AC; Matei E; Predescu C
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31979228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermoplastic biodegradable elastomers based on ε-caprolactone and L-lactide block co-polymers: a new synthetic approach.
    Lipik VT; Kong JF; Chattopadhyay S; Widjaja LK; Liow SS; Venkatraman SS; Abadie MJ
    Acta Biomater; 2010 Nov; 6(11):4261-70. PubMed ID: 20566308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.