BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38400205)

  • 1. An Optimized Stimulation Control System for Upper Limb Exoskeleton Robot-Assisted Rehabilitation Using a Fuzzy Logic-Based Pain Detection Approach.
    Abdallah IB; Bouteraa Y
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism.
    Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J
    Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation].
    Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a biological signal-based evaluator for robot-assisted upper-limb rehabilitation: a pilot study.
    Sheng B; Tang L; Moosman OM; Deng C; Xie S; Zhang Y
    Australas Phys Eng Sci Med; 2019 Sep; 42(3):789-801. PubMed ID: 31372900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced Adaptive Fuzzy Decoupling Control for Lower Limb Exoskeleton.
    Sun W; Lin JW; Su SF; Wang N; Er MJ
    IEEE Trans Cybern; 2021 Mar; 51(3):1099-1109. PubMed ID: 32112693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton.
    Wang W; He Y; Li F; Li J; Liu J; Wu X
    Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].
    Wang L; Hu X; Hu J; Fang Y; He R; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1168-75. PubMed ID: 29715415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and verification of a human-robot interaction system for upper limb exoskeleton rehabilitation.
    Wendong W; Hanhao L; Menghan X; Yang C; Xiaoqing Y; Xing M; Bing Z
    Med Eng Phys; 2020 May; 79():19-25. PubMed ID: 32205023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuzzy Adaptive Passive Control Strategy Design for Upper-Limb End-Effector Rehabilitation Robot.
    Hu Y; Meng J; Li G; Zhao D; Feng G; Zuo G; Liu Y; Zhang J; Shi C
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Route of Motor Recovery in Stroke Patients Driven by Exoskeleton-Robot-Assisted Therapy: A Path-Analysis.
    Pignolo L; Servidio R; Basta G; Carozzo S; Tonin P; Calabrò RS; Cerasa A
    Med Sci (Basel); 2021 Oct; 9(4):. PubMed ID: 34842770
    [No Abstract]   [Full Text] [Related]  

  • 16. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots.
    Guo B; Li Z; Huang M; Li X; Han J
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review.
    Molteni F; Gasperini G; Cannaviello G; Guanziroli E
    PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A randomized clinical control study on the efficacy of three-dimensional upper limb robotic exoskeleton training in chronic stroke.
    Frisoli A; Barsotti M; Sotgiu E; Lamola G; Procopio C; Chisari C
    J Neuroeng Rehabil; 2022 Feb; 19(1):14. PubMed ID: 35120546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of a control method for active kinesiotherapy with an upper extremity rehabilitation exoskeleton without force sensor.
    Falkowski P; Jeznach K
    J Neuroeng Rehabil; 2024 Feb; 21(1):22. PubMed ID: 38342919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.