These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38400224)

  • 1. Propulsive Force Modulation Drives Split-Belt Treadmill Adaptation in People with Multiple Sclerosis.
    Hagen AC; Patrick CM; Bast IE; Fling BW
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Split-Belt Treadmill Adaptation Improves Spatial and Temporal Gait Symmetry in People with Multiple Sclerosis.
    Hagen AC; Acosta JS; Geltser CS; Fling BW
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths.
    Sombric CJ; Torres-Oviedo G
    J Neuroeng Rehabil; 2020 Jun; 17(1):69. PubMed ID: 32493440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint-level coordination patterns for split-belt walking across different speed ratios.
    Kambic RE; Roemmich RT; Bastian AJ
    J Neurophysiol; 2023 May; 129(5):969-983. PubMed ID: 36988216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Step length symmetry adaptation to split-belt treadmill walking after acquired non-traumatic transtibial amputation.
    Kline PW; Murray AM; Miller MJ; So N; Fields T; Christiansen CL
    Gait Posture; 2020 Jul; 80():162-167. PubMed ID: 32516682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the effects of gait asymmetry: Using a split-belt treadmill walking protocol to change step length and peak knee joint contact force symmetry.
    Syrett ED; Peterson CL; Darter BJ
    J Biomech; 2021 Aug; 125():110583. PubMed ID: 34198019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interhemispheric inhibition and gait adaptation associations in people with multiple sclerosis.
    Hagen AC; Acosta JS; Swanson CW; Fling BW
    Exp Brain Res; 2024 Jul; 242(7):1761-1772. PubMed ID: 38822825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two biomechanical strategies for locomotor adaptation to split-belt treadmill walking in subjects with and without transtibial amputation.
    Selgrade BP; Toney ME; Chang YH
    J Biomech; 2017 Feb; 53():136-143. PubMed ID: 28126335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking.
    Stenum J; Choi JT
    J Physiol; 2020 Sep; 598(18):4063-4078. PubMed ID: 32662881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimum effort simulations of split-belt treadmill walking exploit asymmetry to reduce metabolic energy expenditure.
    Price M; Huber ME; Hoogkamer W
    J Neurophysiol; 2023 Apr; 129(4):900-913. PubMed ID: 36883759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive control of ankle stiffness at heel contact is a key element of locomotor adaptation during split-belt treadmill walking in humans.
    Ogawa T; Kawashima N; Ogata T; Nakazawa K
    J Neurophysiol; 2014 Feb; 111(4):722-32. PubMed ID: 24225544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased intramuscular coherence is associated with temporal gait symmetry during split-belt locomotor adaptation.
    Sato S; Choi JT
    J Neurophysiol; 2019 Sep; 122(3):1097-1109. PubMed ID: 31339832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limping on split-belt treadmills implies opposite kinematic and dynamic lower limb asymmetries.
    Tesio L; Malloggi C; Malfitano C; Coccetta CA; Catino L; Rota V
    Int J Rehabil Res; 2018 Dec; 41(4):304-315. PubMed ID: 30303831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Propulsion Demands Increase Locomotor Adaptation at the Expense of Step Length Symmetry.
    Sombric CJ; Calvert JS; Torres-Oviedo G
    Front Physiol; 2019; 10():60. PubMed ID: 30800072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Human Neural Control of Short-term Gait Adaptation to the Split-belt Treadmill.
    Hinton DC; Conradsson DM; Paquette C
    Neuroscience; 2020 Dec; 451():36-50. PubMed ID: 33039522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taking advantage of external mechanical work to reduce metabolic cost: the mechanics and energetics of split-belt treadmill walking.
    Sánchez N; Simha SN; Donelan JM; Finley JM
    J Physiol; 2019 Aug; 597(15):4053-4068. PubMed ID: 31192458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A marching-walking hybrid induces step length adaptation and transfers to natural walking.
    Long AW; Finley JM; Bastian AJ
    J Neurophysiol; 2015 Jun; 113(10):3905-14. PubMed ID: 25867742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A passive exoskeleton can assist split-belt adaptation.
    Sado T; Nielsen J; Glaister B; Takahashi KZ; Malcolm P; Mukherjee M
    Exp Brain Res; 2022 Apr; 240(4):1159-1176. PubMed ID: 35165776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plantarflexion moment is a contributor to step length after-effect following walking on a split-belt treadmill in individuals with stroke and healthy individuals.
    Lauzière S; Miéville C; Betschart M; Duclos C; Aissaoui R; Nadeau S
    J Rehabil Med; 2014 Oct; 46(9):849-57. PubMed ID: 25074249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal asymmetries in gait predict split-belt adaptation behavior in stroke.
    Malone LA; Bastian AJ
    Neurorehabil Neural Repair; 2014; 28(3):230-40. PubMed ID: 24243917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.