BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38400362)

  • 1. Quantitative Detection of Pipeline Cracks Based on Ultrasonic Guided Waves and Convolutional Neural Network.
    Shen Y; Wu J; Chen J; Zhang W; Yang X; Ma H
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CNN-LSTM network-based damage detection approach for copper pipeline using laser ultrasonic scanning.
    Huang L; Hong X; Yang Z; Liu Y; Zhang B
    Ultrasonics; 2022 Apr; 121():106685. PubMed ID: 35032840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crack Detection of Threaded Steel Rods Based on Ultrasonic Guided Waves.
    Peng K; Zhang Y; Xu X; Han J; Luo Y
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep neural networks for crack detection inside structures.
    Moreh F; Lyu H; Rizvi ZH; Wuttke F
    Sci Rep; 2024 Feb; 14(1):4439. PubMed ID: 38396171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Quantification of Subsurface Defects by Analyzing Laser Ultrasonic Signals Using Convolutional Neural Networks and Wavelet Transform.
    Guo S; Feng H; Feng W; Lv G; Chen D; Liu Y; Wu X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3216-3225. PubMed ID: 34106854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Transverse Crack Depth of Rail Bottoms Based on the Ultrasonic Guided Waves of Piezoelectric Sensor Arrays.
    Yang Y; Wang P; Song TL; Jiang Y; Zhou WT; Xu WL
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guided Wave Ultrasonic Testing for Crack Detection in Polyethylene Pipes: Laboratory Experiments and Numerical Modeling.
    Shah J; El-Hawwat S; Wang H
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CNN-LSTM Hybrid Model to Promote Signal Processing of Ultrasonic Guided Lamb Waves for Damage Detection in Metallic Pipelines.
    Shang L; Zhang Z; Tang F; Cao Q; Pan H; Lin Z
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning to Detect Cracks on Damaged Concrete Surfaces Using Two-Branched Convolutional Neural Network.
    Lee J; Kim HS; Kim N; Ryu EM; Kang JW
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31689987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Empowered Structural Health Monitoring and Damage Diagnostics for Structures with Weldment via Decoding Ultrasonic Guided Wave.
    Zhang Z; Pan H; Wang X; Lin Z
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of fatigue-induced micro-cracks in a pipe by using time-reversed nonlinear guided waves: a three-dimensional model study.
    Guo X; Zhang D; Zhang J
    Ultrasonics; 2012 Sep; 52(7):912-9. PubMed ID: 22429813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue Crack Evaluation with the Guided Wave-Convolutional Neural Network Ensemble and Differential Wavelet Spectrogram.
    Chen J; Wu W; Ren Y; Yuan S
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guided Wave-Convolutional Neural Network Based Fatigue Crack Diagnosis of Aircraft Structures.
    Xu L; Yuan S; Chen J; Ren Y
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31443323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface breaking crack sizing method using pulse-echo Rayleigh waves.
    Verma B; BĂ©langer P
    Ultrasonics; 2024 Mar; 138():107232. PubMed ID: 38183757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of fatigue crack closure effect on the evaluation of edge cracks with the fundamental mode of edge waves.
    Zhu H; Kotousov A; Tai Ng C
    Ultrasonics; 2024 Mar; 138():107266. PubMed ID: 38394741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple Cracks Detection in Pipeline Using Damage Index Matrix Based on Piezoceramic Transducer-Enabled Stress Wave Propagation.
    Du G; Kong Q; Zhou H; Gu H
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28805666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Intelligence Method for Recognizing Multiple Defects in Rail.
    Deng F; Li SQ; Zhang XR; Zhao L; Huang JB; Zhou C
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pipeline Damage Detection Using Piezoceramic Transducers: Numerical Analyses with Experimental Validation.
    Yan S; Li Y; Zhang S; Song G; Zhao P
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29966364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Lightweight convolutional neural network for nicotine prediction in tobacco by near-infrared spectroscopy.
    Wang D; Zhao F; Wang R; Guo J; Zhang C; Liu H; Wang Y; Zong G; Zhao L; Feng W
    Front Plant Sci; 2023; 14():1138693. PubMed ID: 37251760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Micro-Cracks in Metals Using Modulation of PZT-Induced Lamb Waves.
    Lee SE; Hong JW
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.