These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38400393)

  • 1. Towards Learning Discrete Representations via Self-Supervision for Wearables-Based Human Activity Recognition.
    Haresamudram H; Essa I; Plötz T
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances.
    Zhang S; Li Y; Zhang S; Shahabi F; Xia S; Deng Y; Alshurafa N
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personalized Human Activity Recognition using Wearables: A Manifold Learning-based Knowledge Transfer.
    Saeedi R; Sasani K; Norgaard S; Gebremedhin AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1193-1196. PubMed ID: 30440604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning.
    Fu Z; He X; Wang E; Huo J; Huang J; Wu D
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.
    Janidarmian M; Roshan Fekr A; Radecka K; Zilic Z
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28272362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors.
    Vuong TH; Doan T; Takasu A
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System.
    Serpush F; Menhaj MB; Masoumi B; Karasfi B
    Comput Intell Neurosci; 2022; 2022():1391906. PubMed ID: 35251142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved human activity recognition technique based on convolutional neural network.
    Raj R; Kos A
    Sci Rep; 2023 Dec; 13(1):22581. PubMed ID: 38114574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Branch Interactive Networks on Multichannel Time Series for Human Activity Recognition.
    Tang Y; Zhang L; Wu H; He J; Song A
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):5223-5234. PubMed ID: 35867366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segment-Based Unsupervised Learning Method in Sensor-Based Human Activity Recognition.
    Takenaka K; Kondo K; Hasegawa T
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable Sensor-Based Residual Multifeature Fusion Shrinkage Networks for Human Activity Recognition.
    Zeng F; Guo M; Tan L; Guo F; Liu X
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large Language Models for Wearable Sensor-Based Human Activity Recognition, Health Monitoring, and Behavioral Modeling: A Survey of Early Trends, Datasets, and Challenges.
    Ferrara E
    Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MaskCAE: Masked Convolutional AutoEncoder via Sensor Data Reconstruction for Self-Supervised Human Activity Recognition.
    Cheng D; Zhang L; Qin L; Wang S; Wu H; Song A
    IEEE J Biomed Health Inform; 2024 May; 28(5):2687-2698. PubMed ID: 38442051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WMNN: Wearables-Based Multi-Column Neural Network for Human Activity Recognition.
    Tang C; Chen X; Gong J; Occhipinti LG; Gao S
    IEEE J Biomed Health Inform; 2023 Jan; 27(1):339-350. PubMed ID: 36327173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring human activity recognition using feature level fusion of inertial and electromyography data.
    Celik Y; Stuart S; Woo WL; Pearson LT; Godfrey A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1766-1769. PubMed ID: 36086572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Applications of Metaheuristics for Human Activity Recognition and Fall Detection Using Wearable Sensors: A Comprehensive Analysis.
    Al-Qaness MAA; Helmi AM; Dahou A; Elaziz MA
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.