BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38400418)

  • 21. Change in Blink Rate in the Metaverse VR HMD and AR Glasses Environment.
    Kim J; Hwang L; Kwon S; Lee S
    Int J Environ Res Public Health; 2022 Jul; 19(14):. PubMed ID: 35886402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ARETT: Augmented Reality Eye Tracking Toolkit for Head Mounted Displays.
    Kapp S; Barz M; Mukhametov S; Sonntag D; Kuhn J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wavelet Decomposition in Analysis of Impact of Virtual Reality Head Mounted Display Systems on Postural Stability.
    Wodarski P; Jurkojć J; Gzik M
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. User capabilities in eyes-free spatial target acquisition in immersive virtual reality environments.
    Wu H; Deng Y; Pan J; Han T; Hu Y; Huang K; Zhang XL
    Appl Ergon; 2021 Jul; 94():103400. PubMed ID: 33735812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Naturalistic visualization of reaching movements using head-mounted displays improves movement quality compared to conventional computer screens and proves high usability.
    Wenk N; Buetler KA; Penalver-Andres J; Müri RM; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Dec; 19(1):137. PubMed ID: 36494668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: a randomized trial.
    Frederiksen JG; Sørensen SMD; Konge L; Svendsen MBS; Nobel-Jørgensen M; Bjerrum F; Andersen SAW
    Surg Endosc; 2020 Mar; 34(3):1244-1252. PubMed ID: 31172325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Virtual reality: a powerful technology to provide novel insight into treatment mechanisms of addiction.
    Mazza M; Kammler-Sücker K; Leménager T; Kiefer F; Lenz B
    Transl Psychiatry; 2021 Dec; 11(1):617. PubMed ID: 34873146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EHTask: Recognizing User Tasks From Eye and Head Movements in Immersive Virtual Reality.
    Hu Z; Bulling A; Li S; Wang G
    IEEE Trans Vis Comput Graph; 2023 Apr; 29(4):1992-2004. PubMed ID: 34962869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eye Tracking in Virtual Reality.
    Anderson NC; Bischof WF; Kingstone A
    Curr Top Behav Neurosci; 2023; 65():73-100. PubMed ID: 36710302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pedestrian Crossing Decisions in Virtual Environments: Behavioral Validity in CAVEs and Head-Mounted Displays.
    Schneider S; Maruhn P; Dang NT; Pala P; Cavallo V; Bengler K
    Hum Factors; 2022 Nov; 64(7):1210-1226. PubMed ID: 33529060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural Applications Using Immersive Virtual Reality: A Review on EEG Studies.
    Choi JW; Kwon H; Choi J; Kaongoen N; Hwang C; Kim M; Kim BH; Jo S
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1645-1658. PubMed ID: 37028309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual Comparison of Networks in VR.
    Joos L; Jaeger-Honz S; Schreiber F; Keim DA; Klein K
    IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3651-3661. PubMed ID: 36048995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measuring trust with the Wayfinding Task: Implementing a novel task in immersive virtual reality and desktop setups across remote and in-person test environments.
    Clements MF; Brübach L; Glazov J; Gu S; Kashif R; Catmur C; Georgescu AL
    PLoS One; 2023; 18(11):e0294420. PubMed ID: 38015928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of virtual reality head mounted display for investigation of movement: a novel effect of orientation of attention.
    Quinlivan B; Butler JS; Beiser I; Williams L; McGovern E; O'Riordan S; Hutchinson M; Reilly RB
    J Neural Eng; 2016 Oct; 13(5):056006. PubMed ID: 27518212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distance Perception in Virtual Reality: A Meta-Analysis of the Effect of Head-Mounted Display Characteristics.
    Kelly JW
    IEEE Trans Vis Comput Graph; 2023 Dec; 29(12):4978-4989. PubMed ID: 35925852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Best Practices for Research in Virtual and Augmented Reality in Dermatology.
    Muralidharan V; Tran MM; Barrios L; Beams B; Ko JM; Siegel DH; Bailenson J
    J Invest Dermatol; 2024 Jan; 144(1):17-23. PubMed ID: 38105083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eye movement characteristics in a mental rotation task presented in virtual reality.
    Tang Z; Liu X; Huo H; Tang M; Qiao X; Chen D; Dong Y; Fan L; Wang J; Du X; Guo J; Tian S; Fan Y
    Front Neurosci; 2023; 17():1143006. PubMed ID: 37051147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative experimental study of visual brain event-related potentials to a working memory task: virtual reality head-mounted display versus a desktop computer screen.
    Aksoy M; Ufodiama CE; Bateson AD; Martin S; Asghar AUR
    Exp Brain Res; 2021 Oct; 239(10):3007-3022. PubMed ID: 34347129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential privacy for eye tracking with temporal correlations.
    Bozkir E; Günlü O; Fuhl W; Schaefer RF; Kasneci E
    PLoS One; 2021; 16(8):e0255979. PubMed ID: 34403454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On Rotation Gains Within and Beyond Perceptual Limitations for Seated VR.
    Wang C; Zhang SH; Zhang Y; Zollmann S; Hu SM
    IEEE Trans Vis Comput Graph; 2023 Jul; 29(7):3380-3391. PubMed ID: 35294351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.