These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 3840048)

  • 1. Lesion of the temporo-ammonic perforant path facilitates self-stimulation of the lateral entorhinal cortex in mice.
    Destrade C; Gauthier M; Cazala P; Caudarella M
    Brain Res; 1985 Oct; 344(2):377-81. PubMed ID: 3840048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation of limbic structures by pharmacological effects of diazepam on electrical self-stimulation in the mouse.
    Caudarella M; Destrade C; Cazala P; Gauthier M
    Brain Res; 1984 Jun; 302(1):196-200. PubMed ID: 6375813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Late post-learning effect of entorhinal cortex electrical stimulation persists despite destruction of the perforant path.
    Gauthier M; Destrade C
    Brain Res; 1984 Sep; 310(1):174-9. PubMed ID: 6478237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Anatomico-functional approach to the mechanisms of memory: analysis by deoxyglucose of the limbic activation induced by electric stimulation of the mouse entorhinal cortex].
    Sif J; Gauthier M; Destrade C
    C R Acad Sci III; 1986; 302(11):423-8. PubMed ID: 2424577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct substrates influence the acquisition of self-stimulation of the hippocampus and the prefrontal cortex.
    Robertson A; Laferrière A; Milner PM
    Physiol Behav; 1986; 37(3):409-18. PubMed ID: 3749300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The temporal-hippocampal region and retention: the role of temporo-entorhinal connections in rats.
    Myhrer T; Naevdal GA
    Scand J Psychol; 1989; 30(1):72-80. PubMed ID: 2740857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histochemical evidence of altered development of cholinergic fibers in the rat dentate gyrus following lesions. II. Effects of partial entorhinal and simultaneous multiple lesions.
    Nadler JV; Cotman CW; Paoletti C; Lynch GS
    J Comp Neurol; 1977 Feb; 171(4):589-604. PubMed ID: 833359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entorhinal inputs to hippocampal CA1 and dentate gyrus in the rat: a current-source-density study.
    Leung LS; Roth L; Canning KJ
    J Neurophysiol; 1995 Jun; 73(6):2392-403. PubMed ID: 7666147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral entorhinal, perirhinal, and amygdala-entorhinal transition projections to hippocampal CA1 and dentate gyrus in the rat: a current source density study.
    Canning KJ; Leung LS
    Hippocampus; 1997; 7(6):643-55. PubMed ID: 9443060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The basolateral limbic circuit and self-stimulation of the medial prefrontal cortex in the rat.
    Ferrer JM; Cobo M; Mora F
    Physiol Behav; 1987; 40(3):291-5. PubMed ID: 3659145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced acetylcholinesterase staining in the hippocampal perforant pathway zone after combined lesions of the septum and entorhinal cortex.
    Chen LL; Van Hoesen GW; Barnes CL; West JR
    Brain Res; 1983 Aug; 272(2):354-9. PubMed ID: 6616210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amygdaloid complex modulates neurotransmission from the entorhinal cortex to the dentate gyrus of the rat.
    Thomas SR; Assaf SY; Iversen SD
    Brain Res; 1984 Jul; 307(1-2):363-5. PubMed ID: 6087989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hippocampus modulates self-stimulation reward from the ventral tegmental area in the rat.
    Van Wolfswinkel L; Van Ree JM
    Brain Res; 1984 Nov; 322(1):162-6. PubMed ID: 6518367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct connection between perirhinal cortex and hippocampus is a major constituent of the lateral perforant path.
    Liu P; Bilkey DK
    Hippocampus; 1996; 6(2):125-35. PubMed ID: 8797014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways through cingulate, neo- and entorhinal cortices mediate atropine-resistant hippocampal rhythmical slow activity.
    Vanderwolf CH; Leung LW; Cooley RK
    Brain Res; 1985 Nov; 347(1):58-73. PubMed ID: 4052807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Differentiation of the effects of diazepam on self-stimulation behavior as a function of the structure of the stimulated brain].
    Caudarella M; Cazala P; Gauthier M; Destrade C
    C R Acad Sci III; 1984; 298(1):23-6. PubMed ID: 6424887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of perforant path neurons to field CA1 by hippocampal projections.
    Bartesaghi R; Gessi T
    Hippocampus; 2003; 13(2):235-49. PubMed ID: 12699331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. c-fos protooncogene expression in rat hippocampus and entorhinal cortex following tetanic stimulation of the perforant path.
    Nikolaev E; Tischmeyer W; Krug M; Matthies H; Kaczmarek L
    Brain Res; 1991 Sep; 560(1-2):346-9. PubMed ID: 1760742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of corticocortical projections in self-stimulation of the prelimbic and sulcal prefrontal cortex in rats.
    Robertson A; Laferrière A; Milner PM
    Behav Brain Res; 1986 Aug; 21(2):129-42. PubMed ID: 3019365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of raphe nuclei on neuronal transmission from perforant pathway through dentate gyrus.
    Winson J
    J Neurophysiol; 1980 Nov; 44(5):937-50. PubMed ID: 6255111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.