These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38400501)

  • 1. Artificial Potential Field Based Trajectory Tracking for Quadcopter UAV Moving Targets.
    Kownacki C
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piecewise-potential-field-based path planning method for fixed-wing UAV formation.
    Fang Y; Yao Y; Zhu F; Chen K
    Sci Rep; 2023 Feb; 13(1):2234. PubMed ID: 36754969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UAV Path Planning for Reconnaissance and Look-Ahead Coverage Support for Mobile Ground Vehicles.
    Jayaweera HMPC; Hanoun S
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetrical Artificial Potential Field as Framework of Nonlinear PID Loop to Control Position Tracking by Nonholonomic UAVs.
    Kownacki C; Ambroziak L
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Tracking of Trajectories through Tracking Rate Regulation: Application to UAVs.
    Diaz-Del-Rio F; Sanchez-Cuevas P; Iñigo-Blasco P; Sevillano-Ramos JL
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on Path Planning and Path Tracking Control of Autonomous Vehicles Based on Improved APF and SMC.
    Zhang Y; Liu K; Gao F; Zhao F
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.
    Chang K; Xia Y; Huang K
    Springerplus; 2016; 5(1):1124. PubMed ID: 27478741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on UAV Route Optimization Method Based on Double Target of Confidence and Ambiguity.
    Zhang H
    Front Neurorobot; 2021; 15():694899. PubMed ID: 34335221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated Target Tracking via a Hybrid Optimization Approach.
    Wang Y; Cao Y
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28264425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precision Landing Tests of Tethered Multicopter and VTOL UAV on Moving Landing Pad on a Lake.
    Kownacki C; Ambroziak L; Ciężkowski M; Wolniakowski A; Romaniuk S; Bożko A; Ołdziej D
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing.
    Park C; Cho N; Lee K; Kim Y
    Sensors (Basel); 2015 Jul; 15(7):17397-419. PubMed ID: 26193281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle.
    Morales J; Castelo I; Serra R; Lima PU; Basiri M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quadcopter UAVs Extended States/Disturbance Observer-Based Nonlinear Robust Backstepping Control.
    Thanh HLNN; Huynh TT; Vu MT; Mung NX; Phi NN; Hong SK; Vu TNL
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trajectory Design for Multi-UAV-Aided Wireless Power Transfer toward Future Wireless Systems.
    Mu J; Sun Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proactive Guidance for Accurate UAV Landing on a Dynamic Platform: A Visual-Inertial Approach.
    Chang CW; Lo LY; Cheung HC; Feng Y; Yang AS; Wen CY; Zhou W
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Analysis of Trajectory Control of Non-holonomic Mobile Robots Based on Internet of Things Target Image Enhancement Technology and Backpropagation Neural Network.
    Zhao L; Wang G; Fan X; Li Y
    Front Neurorobot; 2021; 15():634340. PubMed ID: 33828475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.
    Nguyen PH; Kim KW; Lee YW; Park KR
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28867775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative standoff tracking of target in non-wide area using multi-UAVs with optical cameras.
    Wang Y; Yao P; Lun Y; Zhao Z
    Opt Express; 2019 Sep; 27(18):25688-25707. PubMed ID: 31510437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual Servoing of a Moving Target by an Unmanned Aerial Vehicle.
    Chen CW; Hung HA; Yang PH; Cheng TH
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Multidimensional Repulsive Potential Field to Avoid Obstacles by Nonholonomic UAVs in Dynamic Environments.
    Kownacki C; Ambroziak L
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.