BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38400543)

  • 1. Engineering of Ogataea polymorpha strains with ability for high-temperature alcoholic fermentation of cellobiose.
    Vasylyshyn R; Dmytruk O; Sybirnyy A; Ruchała J
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38400543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional activator Cat8 is involved in regulation of xylose alcoholic fermentation in the thermotolerant yeast Ogataea (Hansenula) polymorpha.
    Ruchala J; Kurylenko OO; Soontorngun N; Dmytruk KV; Sibirny AA
    Microb Cell Fact; 2017 Feb; 16(1):36. PubMed ID: 28245828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxisomes and peroxisomal transketolase and transaldolase enzymes are essential for xylose alcoholic fermentation by the methylotrophic thermotolerant yeast,
    Kurylenko OO; Ruchala J; Vasylyshyn RV; Stasyk OV; Dmytruk OV; Dmytruk KV; Sibirny AA
    Biotechnol Biofuels; 2018; 11():197. PubMed ID: 30034524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha.
    Ryabova OB; Chmil OM; Sibirny AA
    FEMS Yeast Res; 2003 Nov; 4(2):157-64. PubMed ID: 14613880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering and classical selection of the methylotrophic thermotolerant yeast Hansenula polymorpha for improvement of high-temperature xylose alcoholic fermentation.
    Kurylenko OO; Ruchala J; Hryniv OB; Abbas CA; Dmytruk KV; Sibirny AA
    Microb Cell Fact; 2014 Aug; 13():122. PubMed ID: 25145644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Engineered
    Choi HJ; Jin YS; Lee WH
    J Microbiol Biotechnol; 2022 Jan; 32(1):117-125. PubMed ID: 34949751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of hexose transporter-like sensor hxs1 and transcription activator involved in carbohydrate sensing azf1 in xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha.
    Semkiv MV; Ruchala J; Tsaruk AY; Zazulya AZ; Vasylyshyn RV; Dmytruk OV; Zuo M; Kang Y; Dmytruk KV; Sibirny AA
    Microb Cell Fact; 2022 Aug; 21(1):162. PubMed ID: 35964033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation.
    Kim H; Lee WH; Galazka JM; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1087-94. PubMed ID: 24190499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of sugar transporters for improvement of xylose utilization during high-temperature alcoholic fermentation in Ogataea polymorpha yeast.
    Vasylyshyn R; Kurylenko O; Ruchala J; Shevchuk N; Kuliesiene N; Khroustalyova G; Rapoport A; Daugelavicius R; Dmytruk K; Sibirny A
    Microb Cell Fact; 2020 Apr; 19(1):96. PubMed ID: 32334587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Zha J; Li BZ; Shen MH; Hu ML; Song H; Yuan YJ
    PLoS One; 2013; 8(7):e68317. PubMed ID: 23844185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered
    Lee WH; Jin YS
    J Microbiol Biotechnol; 2021 Jul; 31(7):1035-1043. PubMed ID: 34226403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Mig1, Mig2, Tup1 and Hap4 transcription factors in regulation of xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha.
    Kurylenko O; Ruchala J; Kruk B; Vasylyshyn R; Szczepaniak J; Dmytruk K; Sibirny A
    FEMS Yeast Res; 2021 May; 21(4):. PubMed ID: 33983391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.
    Lee WH; Jin YS
    J Microbiol Biotechnol; 2017 Sep; 27(9):1649-1656. PubMed ID: 28683531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase.
    Kim H; Oh EJ; Lane ST; Lee WH; Cate JHD; Jin YS
    J Biotechnol; 2018 Jun; 275():53-59. PubMed ID: 29660472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Metabolic engineering of yeast Hansenula polymorpha for construction of efficient ethanol producers].
    Dmitruk KV; Sibirnyĭ AA
    Tsitol Genet; 2013; 47(6):3-21. PubMed ID: 24437194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization.
    Fox JM; Levine SE; Blanch HW; Clark DS
    Biotechnol J; 2012 Mar; 7(3):361-73. PubMed ID: 22228702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae.
    Bae YH; Kang KH; Jin YS; Seo JH
    J Biotechnol; 2014 Jan; 169():34-41. PubMed ID: 24184384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of new dominant selectable markers for the nonconventional yeasts Ogataea polymorpha and Candida famata.
    Bratiichuk D; Kurylenko O; Vasylyshyn R; Zuo M; Kang Y; Dmytruk K; Sibirny A
    Yeast; 2020 Sep; 37(9-10):505-513. PubMed ID: 32307750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation.
    Ha SJ; Galazka JM; Kim SR; Choi JH; Yang X; Seo JH; Glass NL; Cate JH; Jin YS
    Proc Natl Acad Sci U S A; 2011 Jan; 108(2):504-9. PubMed ID: 21187422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.