BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38400827)

  • 1. Enzyme Kinetics Analysis: An online tool for analyzing enzyme initial rate data and teaching enzyme kinetics.
    Mak DA; Dunn S; Coombes D; Carere CR; Allison JR; Nock V; Hudson AO; Dobson RCJ
    Biochem Mol Biol Educ; 2024; 52(3):348-358. PubMed ID: 38400827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ICEKAT: an interactive online tool for calculating initial rates from continuous enzyme kinetic traces.
    Olp MD; Kalous KS; Smith BC
    BMC Bioinformatics; 2020 May; 21(1):186. PubMed ID: 32410570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rethinking enzyme kinetics: Designing and developing a biomolecular interactive tutorial (BIOMINT) learning tool for undergraduate students.
    Gu J; Andreopoulos S; Jenkinson J; Ng DP
    Biochem Mol Biol Educ; 2020 Jan; 48(1):74-79. PubMed ID: 31532881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple classroom teaching technique to help students understand Michaelis-Menten kinetics.
    Runge SW; Hill BJ; Moran WM; Turrens JF
    CBE Life Sci Educ; 2006; 5(4):348-52. PubMed ID: 17146042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state analysis of enzymes with non-Michaelis-Menten kinetics: The transport mechanism of Na
    Monti JLE; Montes MR; Rossi RC
    J Biol Chem; 2018 Jan; 293(4):1373-1385. PubMed ID: 29191836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flipped online teaching of histology and embryology with design thinking: design, practice and reflection.
    Guo Y; Wang X; Gao Y; Yin H; Ma Q; Chen T
    BMC Med Educ; 2024 Apr; 24(1):388. PubMed ID: 38594653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Educational activity of enzyme kinetics in an undergraduate biochemistry course: invertase enzyme as a model.
    Al-Odat I
    J Microbiol Biol Educ; 2024 Jun; ():e0005024. PubMed ID: 38888314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. renz: An R package for the analysis of enzyme kinetic data.
    Aledo JC
    BMC Bioinformatics; 2022 May; 23(1):182. PubMed ID: 35578161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of continuous enzyme kinetic data using ICEKAT.
    Bursch KL; Olp MD; Smith BC
    Methods Enzymol; 2023; 690():109-129. PubMed ID: 37858527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of interactive mathematical simulations in fundamentals of biochemistry, a LibreText online educational resource, to promote understanding of dynamic reactions.
    Jakubowski HV; Agnew H; Jardine B; Sauro HM
    Biochem Mol Biol Educ; 2024 Mar; ():. PubMed ID: 38516799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EZ-FIT: a practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers.
    Perrella FW
    Anal Biochem; 1988 Nov; 174(2):437-47. PubMed ID: 3239747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme kinetic modelling as a tool to analyse the behaviour of cytochrome P450 catalysed reactions: application to amitriptyline N-demethylation.
    Schmider J; Greenblatt DJ; Harmatz JS; Shader RI
    Br J Clin Pharmacol; 1996 Jun; 41(6):593-604. PubMed ID: 8799527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A laboratory work to introduce biochemistry undergraduate students to basic enzyme kinetics-alkaline phosphatase as a model.
    Miquet JG; González L; Sotelo AI; González Lebrero RM
    Biochem Mol Biol Educ; 2019 Jan; 47(1):93-99. PubMed ID: 30576049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of mushroom tyrosinase to introduce michaelis-menten enzyme kinetics to biochemistry students.
    Flurkey WH; Inlow JK
    Biochem Mol Biol Educ; 2017 May; 45(3):270-276. PubMed ID: 28509370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEPHAS: an interactive graphical user interface for medical and pharmaceutical statistical analysis with R and Shiny.
    Zhou Y; Leung SW; Mizutani S; Takagi T; Tian YS
    BMC Bioinformatics; 2020 May; 21(1):183. PubMed ID: 32393166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing a three-dimensional animation for deeper molecular understanding of michaelis-menten enzyme kinetics.
    Florjanczyk U; Ng DP; Andreopoulos S; Jenkinson J
    Biochem Mol Biol Educ; 2018 Sep; 46(5):561-565. PubMed ID: 30369036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct determination of enzyme kinetic parameters from single reactions using a new progress curve analysis tool.
    Bäuerle F; Zotter A; Schreiber G
    Protein Eng Des Sel; 2017 Mar; 30(3):149-156. PubMed ID: 27744288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating interactive computational modeling in biology curricula.
    Helikar T; Cutucache CE; Dahlquist LM; Herek TA; Larson JJ; Rogers JA
    PLoS Comput Biol; 2015 Mar; 11(3):e1004131. PubMed ID: 25790483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.