These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38400897)

  • 21. Improved motor imagery classification using adaptive spatial filters based on particle swarm optimization algorithm.
    Xiong X; Wang Y; Song T; Huang J; Kang G
    Front Neurosci; 2023; 17():1303648. PubMed ID: 38192510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. L1 norm based common spatial patterns decomposition for scalp EEG BCI.
    Li P; Xu P; Zhang R; Guo L; Yao D
    Biomed Eng Online; 2013 Aug; 12():77. PubMed ID: 23919646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Participant-specific classifier tuning increases the performance of hand movement detection from EEG in patients with amyotrophic lateral sclerosis.
    Aliakbaryhosseinabadi S; Dosen S; Savic AM; Blicher J; Farina D; Mrachacz-Kersting N
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34280899
    [No Abstract]   [Full Text] [Related]  

  • 24. Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis.
    Guy V; Soriani MH; Bruno M; Papadopoulo T; Desnuelle C; Clerc M
    Ann Phys Rehabil Med; 2018 Jan; 61(1):5-11. PubMed ID: 29024794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing Motor Imagery Parameters for Robotic Arm Control by Brain-Computer Interface.
    Hayta Ü; Irimia DC; Guger C; Erkutlu İ; Güzelbey İH
    Brain Sci; 2022 Jun; 12(7):. PubMed ID: 35884640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis.
    Mak JN; McFarland DJ; Vaughan TM; McCane LM; Tsui PZ; Zeitlin DJ; Sellers EW; Wolpaw JR
    J Neural Eng; 2012 Apr; 9(2):026014. PubMed ID: 22350501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards a user-friendly brain-computer interface: initial tests in ALS and PLS patients.
    Bai O; Lin P; Huang D; Fei DY; Floeter MK
    Clin Neurophysiol; 2010 Aug; 121(8):1293-303. PubMed ID: 20347612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study.
    Mainsah BO; Collins LM; Colwell KA; Sellers EW; Ryan DB; Caves K; Throckmorton CS
    J Neural Eng; 2015 Feb; 12(1):016013. PubMed ID: 25588137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A region-based two-step P300-based brain-computer interface for patients with amyotrophic lateral sclerosis.
    Ikegami S; Takano K; Kondo K; Saeki N; Kansaku K
    Clin Neurophysiol; 2014 Nov; 125(11):2305-2312. PubMed ID: 24731767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classification of EEG Using Adaptive SVM Classifier with CSP and Online Recursive Independent Component Analysis.
    Antony MJ; Sankaralingam BP; Mahendran RK; Gardezi AA; Shafiq M; Choi JG; Hamam H
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification.
    Zhang S; Zhu Z; Zhang B; Feng B; Yu T; Li Z
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EEG Channel Selection Based on Correlation Coefficient for Motor Imagery Classification: A Study on Healthy Subjects and ALS Patient.
    Yang T; Ang KK; Phua KS; Yu J; Toh V; Ng WH; So RQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1996-1999. PubMed ID: 30440791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Applying Auto-Regressive Model's Yule-Walker Approach to Amyotrophic Lateral Sclerosis (ALS) patients' Data.
    Sahu M; Vishwal S; Usha Srivalli S; Nagwani NK; Verma S; Shukla S
    Curr Med Imaging Rev; 2019; 15(8):749-760. PubMed ID: 32008542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EEG feature fusion for motor imagery: A new robust framework towards stroke patients rehabilitation.
    Al-Qazzaz NK; Alyasseri ZAA; Abdulkareem KH; Ali NS; Al-Mhiqani MN; Guger C
    Comput Biol Med; 2021 Oct; 137():104799. PubMed ID: 34478922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Online detection of class-imbalanced error-related potentials evoked by motor imagery.
    Liu Q; Zheng W; Chen K; Ma L; Ai Q
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33823492
    [No Abstract]   [Full Text] [Related]  

  • 37. Transformed common spatial pattern for motor imagery-based brain-computer interfaces.
    Ma Z; Wang K; Xu M; Yi W; Xu F; Ming D
    Front Neurosci; 2023; 17():1116721. PubMed ID: 36960172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brain-computer interfaces in amyotrophic lateral sclerosis: A metanalysis.
    Marchetti M; Priftis K
    Clin Neurophysiol; 2015 Jun; 126(6):1255-1263. PubMed ID: 25449558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlation-based channel selection and regularized feature optimization for MI-based BCI.
    Jin J; Miao Y; Daly I; Zuo C; Hu D; Cichocki A
    Neural Netw; 2019 Oct; 118():262-270. PubMed ID: 31326660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is motor-imagery brain-computer interface feasible in stroke rehabilitation?
    Teo WP; Chew E
    PM R; 2014 Aug; 6(8):723-8. PubMed ID: 24429072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.