These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 38400977)
1. Energy, economic, and environmental (3E) assessment of the major greenhouse crops: MFCA-LCA approach. Dekamin M; Sadeghimofrad T; Ahmadloo A Environ Sci Pollut Res Int; 2024 Mar; 31(14):21894-21912. PubMed ID: 38400977 [TBL] [Abstract][Full Text] [Related]
2. Energy, economic, and environmental assessment of coriander seed production using material flow cost accounting and life cycle assessment. Dekamin M; Kheiralipour K; Afshar RK Environ Sci Pollut Res Int; 2022 Nov; 29(55):83469-83482. PubMed ID: 35763139 [TBL] [Abstract][Full Text] [Related]
3. Energy-economic-environmental cycle evaluation comparing two polyethylene and polycarbonate plastic greenhouses in cucumber production (from production to packaging and distribution). Hesampour R; Taki M; Fathi R; Hassani M; Halog A Sci Total Environ; 2022 Jul; 828():154232. PubMed ID: 35283131 [TBL] [Abstract][Full Text] [Related]
4. Investigation of shallot production system in terms of energy-economic-environmental in Iran. Lotfalian Dehkordi A; Abedi A Environ Sci Pollut Res Int; 2021 Dec; 28(46):65676-65686. PubMed ID: 34322815 [TBL] [Abstract][Full Text] [Related]
5. Multiyear life energy and life cycle assessment of orange production in Iran. Alishah A; Motevali A; Tabatabaeekoloor R; Hashemi SJ Environ Sci Pollut Res Int; 2019 Nov; 26(31):32432-32445. PubMed ID: 31612415 [TBL] [Abstract][Full Text] [Related]
6. Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion. Nayal FS; Mammadov A; Ciliz N J Environ Manage; 2016 Dec; 184(Pt 2):389-399. PubMed ID: 27742149 [TBL] [Abstract][Full Text] [Related]
7. Nutrient-derived environmental impacts in Chinese agriculture during 1978-2015. Wu H; Wang S; Gao L; Zhang L; Yuan Z; Fan T; Wei K; Huang L J Environ Manage; 2018 Jul; 217():762-774. PubMed ID: 29656257 [TBL] [Abstract][Full Text] [Related]
8. LCA of tomato greenhouse production using spatially differentiated life cycle impact assessment indicators: an Albanian case study. Canaj K; Mehmeti A; Cantore V; Todorović M Environ Sci Pollut Res Int; 2020 Mar; 27(7):6960-6970. PubMed ID: 31879875 [TBL] [Abstract][Full Text] [Related]
9. Life cycle assessment of rice production systems in different paddy field size levels in north of Iran. Habibi E; Niknejad Y; Fallah H; Dastan S; Tari DB Environ Monit Assess; 2019 Mar; 191(4):202. PubMed ID: 30826990 [TBL] [Abstract][Full Text] [Related]
10. An environmental impact calculator for greenhouse production systems. Torrellas M; Antón A; Montero JI J Environ Manage; 2013 Mar; 118():186-95. PubMed ID: 23435156 [TBL] [Abstract][Full Text] [Related]
11. Eco-energy and environmental evaluation of cantaloupe production by life cycle assessment method. Azizpanah A; Fathi R; Taki M Environ Sci Pollut Res Int; 2023 Jan; 30(1):1854-1870. PubMed ID: 35922594 [TBL] [Abstract][Full Text] [Related]
12. Conceptual assessment of energy input-output analysis and data envelopment analysis of greenhouse crops in Crete Island, Greece. Elhag M; Boteva S Environ Sci Pollut Res Int; 2019 Dec; 26(35):35377-35386. PubMed ID: 31168717 [TBL] [Abstract][Full Text] [Related]
13. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment? Meier MS; Stoessel F; Jungbluth N; Juraske R; Schader C; Stolze M J Environ Manage; 2015 Feb; 149():193-208. PubMed ID: 25463583 [TBL] [Abstract][Full Text] [Related]
14. Assessing energy efficiencies, economy, and global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province. Mohammadzadeh A; Mahdavi Damghani A; Vafabakhsh J; Deihimfard R Environ Sci Pollut Res Int; 2017 Jul; 24(20):16971-16984. PubMed ID: 28577148 [TBL] [Abstract][Full Text] [Related]
15. Assessing the environmental impacts of organic and conventional mixed vegetable production based on the life cycle assessment approach. Temizyurek-Arslan M; Karacetin E Integr Environ Assess Manag; 2022 Nov; 18(6):1733-1746. PubMed ID: 35332683 [TBL] [Abstract][Full Text] [Related]
16. Energy Consumption, Carbon Emissions and Global Warming Potential of Wolfberry Production in Jingtai Oasis, Gansu Province, China. Wang Y; Ma Q; Li Y; Sun T; Jin H; Zhao C; Milne E; Easter M; Paustian K; Yong HWA; McDonagh J Environ Manage; 2019 Dec; 64(6):772-782. PubMed ID: 31748948 [TBL] [Abstract][Full Text] [Related]
17. Developing a carbon footprint model and environmental impact analysis of municipal solid waste transportation: A case study of Tehran, Iran. Rouhi K; Shafiepour Motlagh M; Dalir F J Air Waste Manag Assoc; 2023 Dec; 73(12):890-901. PubMed ID: 37843987 [TBL] [Abstract][Full Text] [Related]
18. Thermochemical valorization of greenhouse cucumber, tomato and pepper as biofuel. Pinna-Hernández MG; Díaz Villanueva MJ; Cortés-Izurdiaga M; Becker SJ; Casas López JL; Acien Fernández FG Heliyon; 2023 Dec; 9(12):e22513. PubMed ID: 38094059 [TBL] [Abstract][Full Text] [Related]
19. Analyzing sustainability in bread production: a life cycle assessment approach to energy, exergy and environmental footprint. Rafiee M; Abbaspour-Fard MH; Heidari A Environ Sci Pollut Res Int; 2024 Jul; 31(34):46949-46964. PubMed ID: 38977553 [TBL] [Abstract][Full Text] [Related]
20. Environmental impact assessment for ornamental plant greenhouse: Life cycle assessment approach for primrose production. Salehpour T; Khanali M; Rajabipour A Environ Pollut; 2020 Nov; 266(Pt 3):115258. PubMed ID: 32771865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]