BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38401283)

  • 1. Development of the BioBattery: A novel enzyme fuel cell using a multicopper oxidase as an anodic enzyme.
    Batchu K; Probst D; Satomura T; Sode K
    Biosens Bioelectron; 2024 May; 252():116092. PubMed ID: 38401283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a biocathode using the multicopper oxidase from the hyperthermophilic archaeon, Pyrobaculum aerophilum: towards a long-life biobattery.
    Sakamoto H; Uchii T; Yamaguchi K; Koto A; Takamura E; Satomura T; Sakuraba H; Ohshima T; Suye S
    Biotechnol Lett; 2015 Jul; 37(7):1399-404. PubMed ID: 25808819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability.
    Rengaraj S; Kavanagh P; Leech D
    Biosens Bioelectron; 2011 Dec; 30(1):294-9. PubMed ID: 22005596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes.
    Jenkins P; Tuurala S; Vaari A; Valkiainen M; Smolander M; Leech D
    Bioelectrochemistry; 2012 Oct; 87():172-7. PubMed ID: 22200380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme orientation for direct electron transfer in an enzymatic fuel cell with alcohol oxidase and laccase electrodes.
    Arrocha AA; Cano-Castillo U; Aguila SA; Vazquez-Duhalt R
    Biosens Bioelectron; 2014 Nov; 61():569-74. PubMed ID: 24953844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mediated glucose/oxygen enzymatic fuel cell based on printed carbon inks containing aldose dehydrogenase and laccase as anode and cathode.
    Jenkins P; Tuurala S; Vaari A; Valkiainen M; Smolander M; Leech D
    Enzyme Microb Technol; 2012 Mar; 50(3):181-7. PubMed ID: 22305173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O
    Giroud F; Sawada K; Taya M; Cosnier S
    Biosens Bioelectron; 2017 Jan; 87():957-963. PubMed ID: 27665518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes.
    MacAodha D; Ó Conghaile P; Egan B; Kavanagh P; Leech D
    Chemphyschem; 2013 Jul; 14(10):2302-7. PubMed ID: 23788272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into multicopper oxidase laccase from
    Agrawal K; Shankar J; Kumar R; Verma P
    J Environ Sci Health B; 2020; 55(12):1048-1060. PubMed ID: 32877269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilirubin oxidase from Bacillus pumilus: a promising enzyme for the elaboration of efficient cathodes in biofuel cells.
    Durand F; Kjaergaard CH; Suraniti E; Gounel S; Hadt RG; Solomon EI; Mano N
    Biosens Bioelectron; 2012 May; 35(1):140-146. PubMed ID: 22410485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BioCapacitor: A novel principle for biosensors.
    Sode K; Yamazaki T; Lee I; Hanashi T; Tsugawa W
    Biosens Bioelectron; 2016 Feb; 76():20-8. PubMed ID: 26278505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electrochemical method for investigation of conformational flexibility of active sites of Trametes versicolor laccase based on sensitive determination of copper ion with cysteine-modified electrodes.
    Li X; Yu P; Yang L; Wang F; Mao L
    Anal Chem; 2012 Nov; 84(21):9416-21. PubMed ID: 23016928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An air-breathing enzymatic cathode with extended lifetime by continuous laccase supply.
    Kipf E; Sané S; Morse D; Messinger T; Zengerle R; Kerzenmacher S
    Bioresour Technol; 2018 Sep; 264():306-310. PubMed ID: 29857285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosupercapacitors for powering oxygen sensing devices.
    Kizling M; Draminska S; Stolarczyk K; Tammela P; Wang Z; Nyholm L; Bilewicz R
    Bioelectrochemistry; 2015 Dec; 106(Pt A):34-40. PubMed ID: 25960258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the performance of a biofuel cell cathode with laccase-containing culture supernatant from Pycnoporus sanguineus.
    Fokina O; Eipper J; Winandy L; Kerzenmacher S; Fischer R
    Bioresour Technol; 2015 Jan; 175():445-53. PubMed ID: 25459854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid biobattery based on arylated carbon nanotubes and laccase.
    Stolarczyk K; Sepelowska M; Lyp D; Zelechowska K; Biernat JF; Rogalski J; Farmer KD; Roberts KN; Bilewicz R
    Bioelectrochemistry; 2012 Oct; 87():154-63. PubMed ID: 22078125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous operation of an ultra-low-power microcontroller using glucose as the sole energy source.
    Lee I; Sode T; Loew N; Tsugawa W; Lowe CR; Sode K
    Biosens Bioelectron; 2017 Jul; 93():335-339. PubMed ID: 27743864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An oxygen-independent and membrane-less glucose biobattery/supercapacitor hybrid device.
    Xiao X; Conghaile PÓ; Leech D; Ludwig R; Magner E
    Biosens Bioelectron; 2017 Dec; 98():421-427. PubMed ID: 28711029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface display of redox enzymes in microbial fuel cells.
    Fishilevich S; Amir L; Fridman Y; Aharoni A; Alfonta L
    J Am Chem Soc; 2009 Sep; 131(34):12052-3. PubMed ID: 19663383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells.
    Zeng T; Pankratov D; Falk M; Leimkühler S; Shleev S; Wollenberger U
    Biosens Bioelectron; 2015 Apr; 66():39-42. PubMed ID: 25460879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.