These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38401430)

  • 41. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles.
    Cusenza MA; Bobba S; Ardente F; Cellura M; Di Persio F
    J Clean Prod; 2019 Apr; 215():634-649. PubMed ID: 31007414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recycling and Reusing of Graphite from Retired Lithium-ion Batteries: A Review.
    Tian H; Graczyk-Zajac M; Kessler A; Weidenkaff A; Riedel R
    Adv Mater; 2024 Mar; 36(13):e2308494. PubMed ID: 38102959
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Criticality Assessment of the Life Cycle of Passenger Vehicles Produced in China.
    Sun X; Bach V; Finkbeiner M; Yang J
    Circ Econ Sustain; 2021; 1(1):435-455. PubMed ID: 34888549
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling.
    Ojanen S; Lundström M; Santasalo-Aarnio A; Serna-Guerrero R
    Waste Manag; 2018 Jun; 76():242-249. PubMed ID: 29615279
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphite Recycling from Spent Lithium-Ion Batteries.
    Rothermel S; Evertz M; Kasnatscheew J; Qi X; Grützke M; Winter M; Nowak S
    ChemSusChem; 2016 Dec; 9(24):3473-3484. PubMed ID: 27860314
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.
    Majeau-Bettez G; Hawkins TR; Strømman AH
    Environ Sci Technol; 2011 May; 45(10):4548-54. PubMed ID: 21506538
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Toward sustainable and systematic recycling of spent rechargeable batteries.
    Zhang X; Li L; Fan E; Xue Q; Bian Y; Wu F; Chen R
    Chem Soc Rev; 2018 Oct; 47(19):7239-7302. PubMed ID: 30124695
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integrating Circular Economy Strategies with Low-Carbon Scenarios: Lithium Use in Electric Vehicles.
    Watari T; Nansai K; Nakajima K; McLellan BC; Dominish E; Giurco D
    Environ Sci Technol; 2019 Oct; 53(20):11657-11665. PubMed ID: 31577427
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An overview of global power lithium-ion batteries and associated critical metal recycling.
    Miao Y; Liu L; Zhang Y; Tan Q; Li J
    J Hazard Mater; 2022 Mar; 425():127900. PubMed ID: 34896721
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lithium-ion battery recycling: a source of per- and polyfluoroalkyl substances (PFAS) to the environment?
    Rensmo A; Savvidou EK; Cousins IT; Hu X; Schellenberger S; Benskin JP
    Environ Sci Process Impacts; 2023 Jun; 25(6):1015-1030. PubMed ID: 37195252
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.
    Li B; Gao X; Li J; Yuan C
    Environ Sci Technol; 2014; 48(5):3047-55. PubMed ID: 24483341
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discharge of lithium-ion batteries in salt solutions for safer storage, transport, and resource recovery.
    Torabian MM; Jafari M; Bazargan A
    Waste Manag Res; 2022 Apr; 40(4):402-409. PubMed ID: 34060962
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Superior "green" electrode materials for secondary batteries: through the footprint family indicators to analyze their environmental friendliness.
    Wu H; Gong Y; Yu Y; Huang K; Wang L
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36538-36557. PubMed ID: 31732947
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coupling redox flow desalination with lithium recovery from spent lithium-ion batteries.
    Shan W; Zi Y; Chen H; Li M; Luo M; Oo TZ; Lwin NW; Aung SH; Tang D; Ying G; Chen F; Chen Y
    Water Res; 2024 Mar; 252():121205. PubMed ID: 38301527
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A review on the recycling of spent lithium iron phosphate batteries.
    Zhao T; Li W; Traversy M; Choi Y; Ghahreman A; Zhao Z; Zhang C; Zhao W; Song Y
    J Environ Manage; 2024 Feb; 351():119670. PubMed ID: 38039588
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives.
    Hantanasirisakul K; Sawangphruk M
    Glob Chall; 2023 Apr; 7(4):2200212. PubMed ID: 37020621
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y
    Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Material flow analysis on the critical resources from spent power lithium-ion batteries under the framework of China's recycling policies.
    Zong Y; Yao P; Zhang X; Wang J; Song X; Zhao J; Wang Z; Zheng Y
    Waste Manag; 2023 Oct; 171():463-472. PubMed ID: 37801873
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Circular economy strategies for mitigating metals shortages in electric vehicle batteries under China's carbon-neutral target.
    Hu Z; Yu B; Daigo I; Tan J; Sun F; Zhang S
    J Environ Manage; 2024 Feb; 352():120079. PubMed ID: 38242028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.